
Towards Neuro-Silicon Interface Using Reconfigurable Dynamic
Clamping

Jun Wen Luo, Terrence Mak, Bo Yu, Peter Andras and Alex Yakovlev

Abstract— Dynamic clamp emerges as an important ap-
paratus to study the intrinsic neuronal properties through
close-loop interactions between models and biological neurons.
Modelling large-scale neuronal networks in software will result
in significant computational delay that becomes a bottleneck
to apply dynamic clamp for more complicated systems. In this
paper, we present a real-time dynamic clamping system based
on field programmable gate arrays (FPGAs) to accelerate the
necessary computations. It also provides a flexible platform
to reconfigure various model parameters and topologies. Real-
time neuronal and synaptic models were implemented in FPGA,
and interconnected with the stomatograstric ganglion (STG)
nervous system to exemplify the real-time dynamics. Results
show that our method can be effectively configured to mimic
various biological neural networks and is two orders of mag-
nitude faster than software approach using desktop computer.

I. INTRODUCTION

Dynamic clamping is a novel technique that bridges the
communication gap between neurological and artificial sys-
tems. Using this technique, biological neurons and compu-
tational models can form a close-loop network, and leads
to a wide range of applications and neuroscience research
methods [1]. By realizing different neuronal models, the
biological systems that to be studied can be modulated or
reconfigured in such closed-loop, such as synaptic strengths,
intrinsic properties of single neurons and wirings. This
technique can also lead to future cyborg systems that consist
of components of both biological and silicon elements.

Realization of dynamic clamping is challenging. It re-
quires both fine experimental physiology skills and artificial
models with sufficiently high accuracy and ample compu-
tational speed. In term of physiological techniques, both
intra- and extra-cellular recording are essential to identify
neuron in nervous systems and required special physiolog-
ical techniques include micro-dissection and ultra-fine and
precise manipulation of micro-electrodes. On the other hand,
it is important to have high-speed artificial neuronal model
to catch up with biological neural dynamics. For example,
computational model updating frequency must be faster than
the smallest time constant of biological neurons. Also, a wide
range of fidelity and high accuracy are required to support
different experimental requirements
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Fig. 1. FPGA based dynamic clamp system.

Field-programmable gate arrays (FPGAs) provides a real-
time computational platform to implement complex neuronal
models [2]. Abundance logics and interconnect fabrics are
available to construct various neuronal models and, more
importantly, the capability of reconfigurable enables variation
of models to capture and interact with the biological neurons
dynamically.

In this paper, we present a framework that leads to build
dynamic clamping systems using FPGAs. The stomatogras-
tric ganglion (STG) nervous system of crabs [6] is employed
to exemplify the physiological techniques and implemen-
tation of computational model in FPGAs. This approach
leads to future neuron-silicon closed-loop systems for brain-
machine interface and neuron-rehabilitation.

II. THE DYNAMIC CLAMP SYSTEM

Dynamic clamp system [1] consists of two main parts.
One is the biological nervous systems and the other one is
a computational neuronal model. Fig. 1 shows an example
of a basic configuration of a dynamic clamp system for
stomastograstric ganglion (STG) nervous system of crabs.
This close-loop system runs under recording mode and
stimulation mode separately. The cell membrane potentials
are recorded by glass electrodes and are regarded as inputs
into the computational model. The computational model is
able to compute the feedback current and injects to the
recording cells. Since the current updating time is very short,
usually in milliseconds, high-speed computational systems
are required for the necessary modelling. FPGAs provide
high computing speed and updating frequency, thus, the
device is suitable as computational model to exhibit real-
time and scalable solutions.
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Fig. 2. Datapath diagram of HR model.

III. HARDWARE ARCHITECTURE OF NERUONAL MODELS

A. Neuronal model

Hindmarsh - Rose (HR) model is adopted in our system
due to its simplicity[3]. Alternative models could be em-
ployed to improve the model complexity and accuracy. In
this model, three coupled first order differential equations are
used to represent neuronal action potential. These three equa-
tions were originally developed for isolated triggered bursts,
and later improved to explain more general phenomenon of
burst pattern discharge [3]. Several main characteristics, such
as adaption, burst generation, random burst structure and post
inhibitory rebound can be represent in this model.

d

dx
x = (−x3 + a ∗ x2 + y + I − z)G (1)

d

dy
y = (1− b ∗ x2 − y)G (2)

d

dz
z = (r(s(x− x0)− z))G (3)

Data path diagram of HR model is shown in Fig. 2.Sam-
pling rate, G, is introduced to meet the requirements of
sampling frequency in hardware. Reconfigure ability of this
model is achieved by varying phase plane according to
different combinations of input values. As a result, we
could generate three typical neuron states and specific burst
patterns.

B. Synaptic model

Synaptic model exerts an indispensable effect on overall
system results in dynamic clamp system. Both electrical and
chemical synapses exist in STG and many other nervous
systems. For electrical synapse, it can be modelled by
resistances to capture gap junction behaviours that are both
bidirectional signal transfer and synchronization. In most of
nerves systems, chemical synapses are key communication
unit for neurons. In line with [4], we employed a synaptic
model:

Ic = GcS(t)(Xrev −Xpost) (4)

(1− S∞)τs
d

dt
S(t) = (S∞ − S(t)) (5)

S∞(Xpre) = tanh
Xpre −Xth

Xslope
(6)

Fig. 3. Datapath diagram of chemical synapse.

Data path diagram is shown in Fig. 3. Different behaviours
are mathematically embedded in equations. Eq. (4): synaptic
output Ic are decided by reversal potential Xrev, postsy-
naptic potential Xpost, synaptic conductance Gc and instan-
taneous synaptic activation S(t); Eq. (5): the relationship
between instantaneous synaptic activation S(t) and steady-
state synaptic activation S∞; Eq.(6): steady-state synaptic
activation S∞ is depended on presynaptic potential Xpre,
synaptic threshold voltage Xth and synaptic slope voltage
Xslope.

The divider circuit is realized using look up table with
a proper addressing scheme.It could decrease computation
delay apparently compare to divider algorithm.Integration
circuit is achieved by adder and register. Every synaptic
parameter could as an input in this circuit to satisfied diverse
experiment targets.

C. Neuronal Network

Neuronal networks with different topologies can be im-
plemented on FPGA. The STG is taken as an example, as
shown in Fig. 4. 12 different neurons are configured through
using different parameters of the HR model. Electrical and
chemical synapses are involved. Various chemical synapses
can be achieved by varying parameters. According to the in-
terconnections of STG, neuronal models and synapse models
are connected to form a FPGA based STG.

IV. EXPERIMENT AND RESULTS

A. Experimental Preparation

Adult Cancer pagurus L. were stuffing in ice for half
an hour for anesthetizing. Then we detached the stom-
atogastric nervous system (STNS) and pined down in a
silicone elastomer - lined petri dish with chilled saline (10
-13◦C). For extracellular recordings, a petroleum jelly-based
cylindrical compartment was built around a part of the nerve
to electrically isolate STNS nerves from the bath. One steel
electrode was placed in this compartment while the other
one placed in the bath as a reference point. An AC differ-
ential amplifier (Univ. Kaiserslautern, Germany) was used
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Fig. 4. An example of reconfigurable neural network based on the real
crab STG network. The STG consists of 13 different kinds of neurons,
which are labeled on the cells. Four different synaptic states (active, inactive,
strengthen and weaken) could be switched in real time.

Fig. 5. Three states of HR model: (a) silence; (b) slow wave; (c) burst
patterns

for amplifying and recording. For intracellular recordings,
first we desheathed the STG to inject the glass electrodes
(GB 100TF-8P, Science Products, Hofheim, Germany; 25-
40Mohm). A BA 01X Amplifier (NPI, Tamm, Germany) was
used for signal amplifying. Files were then converted and
analysed using Spike 2 v6.10 (Cambridge Electronic Design,
Cambridge, UK).

For hardware design, we use Xilinx System Generator [5]
to design neuronal models. The targeting device is Xinlinx
Virtex4 xc4vsx35-10ff668.

B. Cell Behaviours

By changing the parameter x0, three different model states
can be achieved, as shown in Fig. 5, which are silence state,
slow wave states and burst pattern state.The results indicate
that our method can efficiently mimic main neuronal states
in the Fig. 5. Even more, in burst pattern state, various
burst patterns can be generated by changing three balance
points’s location in nullclines of equations(1-3). Fig. 6 shows
two different burst patterns. According to these results,
the HR computational model shows a strong reconfigurable
ability.Also, patterns produced by FPGAs are almost the
same as real neuron patterns.

C. Synaptic model

We use intracellular recording lateral pyloric neuron(PD)
cell membrane potential as inputs for both electrical synapse

Fig. 6. Two different patterns in burst states of HR model.

Fig. 7. Artificial electrical synapse between a biological and a FPGA
neuron model. (a) Membrane potential of biological PD cell. (b)Membrane
potential of FPGA neuron model . Biological PD cell membrane potential
(c) from 0.6s to 0.7s, (d) from 1.6s to1.7s, (e) from 2.5s to 2.6s. (f) The
membrane potential of FPGA cell model in slow wave state (0.6s - 0.7s). (g)
The membrane potential of FPGA cell model in silence state (1.6s -1.7s).
(h) The membrane potential of FPGA cell model in burst patterns state (2.5s
- 2.6s).

and chemical synapse to confirm and inspect synapse func-
tions. The results of electrical synapse are shown in Fig.
7. We changed neuronal model states in sequence. During
0s-1s, 1s-2s and 2s-3s, the neuron is at slow wave, silence
and burst pattern states separately. The FPGA model outputs
show strong synchronizing with biological neuron outputs
due to resistant behaviour of electrical synapse.

Chemical synapse results are shown in Fig. 8. In the slow
wave state (0s-1s in Fig. 8(b)), spike frequency is much
higher than the neuron with electrical synapse (0s-1s in
Fig. 7(b)). In the silence state, tiny spikes can be seen in
Fig. 8(b) (1s-2s), which may results from chemical synapse
accumulation function. In the burst state, the burst patterns
in Fig. 8(b) (2s-3s) are stronger and more regular than that in
Fig. 7(b) (2s-3s). In a summary, both synapse models express
physiological behaviours (silence,slow and burst) correctly.

D. Neuronal Network

We design a simple pyloric network which consists of four
types of cell and both electrical and chemical synapse. This
network is implemented on FPGA. A constant current (3nA)
was injected to the network to observe the burst patterns
while changing neuron topologies in real time.
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Fig. 8. Artificial chemicial synapse between a biological and a FPGA
neuron model. (a) Membrane potential of biological PD cell. (b)Membrane
potential of FPGA neuron model . Biological PD cell membrane potential
(c) from 0.6s to 0.7s, (d) from 1.6s to1.7s, (e) from 2.5s to 2.6s. (f) The
membrane potential of FPGA cell model in slow wave state (0.6s - 0.7s). (g)
The membrane potential of FPGA cell model in silence state (1.6s -1.7s).
(h) The membrane potential of FPGA cell model in burst patterns state (2.5s
- 2.6s).

Fig. 9. Different output patterns under two topologies. Arrow of dash line
represents electrical synapse and arrow of solid line represents chemical
synapse. In the second topology, some synapses are strengthened in bold
line while some synapses are inactive.

As it can be seen in the Fig. 9, we change the pyloric net-
work structure at time 1s by changing input control signals,
which make synapses (PD to PY, PD to LP) inactive and
synapses (other synapses except electrical synapse) strength-
ened. The LP and PY burst patterns changed dramatically
while AB and PD neurons changed a little bit. Based on the
capability of changing topologies in real-time, we can mimic
neuronal modulators such as dopamine that usually exerts a
vital influence on synapse [6].

E. FPGA Performance

Comparing to the software, FPGA demonstrates good
scalability and high-speed computational performance. We
compared the computational delay for generating three bursts
using software and FPGAs. Fig. 10 shows that FPGA is
very scalable and deliver same computational performance
with increasing number of cells. The software computational
delay increases exponentially with the cell number due to the
sequential computation. For accuracy aspect, hardware shows
a good capability to represent burst patterns as software
because of high number bits in circuits.

Fig. 10. Comparsion the delay for generating three bursts between software
and FPGA.

V. CONCLUSION

This paper described a dynamic clamping system based
on the FPGA, especially focus on the computational models:
three kinds of states neuron model and two types of synapse
create a good reconfigurable small network. By injecting
intrcellular recording PD data, it displays various output
motor patterns by changing its neuron states in real time. This
model is vital to investigate deep centre pattern generator
mechanism in neurons through dynamic clamping. Also,
two orders of magnitude improvement in computational
speed can be achieve by utilizing FPGA effectively. This
scalable dynamic clamping system enables new experiments
to uncover new biological mechanisms in nerves systems.
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