
  

 

Abstract—Recent advances in brain-machine interfaces (BMIs) 
have allowed for high density recordings using microelectrode 
arrays. However, these large datasets present a challenge in 
how to practically identify features of interest and discard non- 
task-related neurons. Thus, we apply a previously reported 
unsupervised clustering analysis to neural data acquired from a 
non-human primate as it performed a center-out reach-and-
grasp task. Although neurons were recorded from multiple 
arrays across motor and premotor areas, neurons were found 
to cluster into only two groups which differ by their mean 
firing rate. No spatial distribution of neurons was evident in 
different groups, either across arrays or at different depths. 
Using a Kalman filter to decode arm, hand, and finger 
kinematics, we find that using neurons from only one of the 
groups resulted in higher decoding accuracy (r=0.73) than 
using randomly selected neurons (r=0.68). This suggests that 
the proposed method can be used to prune the input space and 
identify an optimal population of neurons for BMI tasks. 

I. INTRODUCTION 

rain-machine interfaces (BMIs) have been developed to 
successfully decode upper arm movements of monkeys 

in both open-loop [1] and with real-time feedback [2]. 
Traditionally, BMI researchers have recorded from single 
cortical sites and been limited to decoding from individual 
neurons that are found to be tuned to the movement or 
otherwise task-related [3]. However, recent advances in 
neural recording now allow for single session datasets with 
multiple signals obtained at high sampling rates using 
microelectrode arrays. This increased data has led to the 
decoding of more complex, multiple-DoF movements [4]. 

Even in cases where multiple neurons are decoded, only 
individual contributions to the decoding accuracy are 
considered and not how neurons function as a group. 
Neuronal interactions are generally assumed to be 
stationary, and their groupings constant. In order to extend 
the capabilities of BMIs, the behavior of neurons as 
dynamically evolving communities must be considered. For 
example, although a particular group of neurons may show 
the highest decoding accuracy during one component of a 
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task, there is no reason to expect the same group will decode 
a different component similarly well. Furthermore, not all 
single units from multichannel recordings are task-related 
and thus potentially contribute only noise to the decoding 
filter. Presumably, neurons that are not relevant to the task 
would exhibit different firing rate profiles and could thus be 
identified and pruned from the input space ahead of time. 
 Finding community structure in neuronal data is 
complicated by several factors. First, the true number of 
neuronal groups is not known – and thus methods that 
specify the number of groups a priori artificially bias the 
observed structure. Second, most grouping techniques are 
semi-supervised and thus require the specification of 
additional initial parameters [5]. In order to overcome these 
issues, we employ a novel clustering technique described by 
Humphries [6], which identifies neuronal communities 
based on similarities between spike trains. This technique is 
also robust in that it self-determines the number of groups 
and clusters neurons accordingly.   

We apply this clustering technique to spiking data 
collected from primates as they perform a center-out reach-
and-grasp task.  This paper has three goals: (1) we will 
group across all trials for each neuron to determine whether 
neurons have a stereotypical response for identical motor 
movements, (2) we will then group across all neurons and 
investigate how neurons are grouped spatially across arrays, 
and whether this grouping is different for each movement 
type, and (3) we will see if the resultant grouping can be 
used for feature selection in decoding arm, hand, and finger 
kinematics. Thus, this work aims to provide a better 
understanding of neuronal behavior across multiple cortical 
regions during a BMI motor task. 

II. METHODS 

A. Experimental Setup 

A male rhesus monkey (M. mulatta) was visually cued to 
reach towards and grasp four different objects at different 
spatial locations (Fig.1, middle). After grasping, the monkey 
was required to rotate the sphere 45, pull the 
perpendicularly mounted cylinder (mallet), depress the 
pushbutton, or pull the coaxial cylinder. Single-unit activity 
was recorded using a Plexon (Dallas, TX) data acquisition 
system from five floating microelectrode arrays (FMA) in 
the primary motor cortex (M1), one each in dorsal (PMd) 
and ventral (PMv) premotor cortex, and one in the primary 
somatosensory cortex (S1). Each FMA consisted of 16 
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electrodes and up to four single-units could be discriminated 
per electrode. Upper-limb kinematics were simultaneously 
tracked using a Vicon (Oxford, UK) motion capture system 
with 30 markers on the forearm, palm, and individual 
fingers. Joint angles of the hand, wrist, and fingers were 
calculated using methods described in [7]. 

B. Clustering Algorithm 

Neurons were grouped using the clustering algorithm 
described in detail by Humphries [6] and implemented in 
Matlab 7.4 (MathWorks, Inc., Natick, MA). A summary of 
the key steps is presented here. 

As a pre-processing step, individual spike trains were first 
binned at different time scales. The similarity between any 
two spike trains was assessed by computing the Hamming 
distance, which is defined as the proportion of identical bins 
in each spike train. In this fashion, a similarity matrix C was 
constructed for all pair-wise comparisons of spike trains, 

ijjiij hCC  1        (1) 

where hij is the Hamming distance between the ith and jth 
spike trains. The diagonal of C was set to zero, so that self-
similarity would not influence grouping. 

The clustering technique uses network theory to describe 
the similarity matrix as an undirected network, where each 
spike train represents a node. The goal is to thus maximize 
the modularity Q over all possible divisions of the network, 

 SPCStraceQ T )(        (2) 

where C is the similarity matrix from before; P is the null-
network model that captures the expected number of links 
within each community, and S is a matrix denoting which 

group that a node belongs to. In other words, P represents 
the pair-wise probability of spike trains forming connections 
with each other and is defined as, 
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where di is the total strength of connections from node i, and 
m is the total strength of all of connections in the network. S 
represents the grouping matrix and is defined as, 
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Rather than fixing the number of groups a priori, both the 
number of groups and group memberships of all nodes are 
determined iteratively. To determine an upper bound on the 
number of possible groups, we performed singular value 
decomposition on the modularity matrix B = C – P, and 
retained all N eigenvectors with positive eigenvalues. We 
then performed K-mean clustering for K=2...N+1 possible 
groupings and calculated QK for each case.  

In order to account for spurious groupings due to 
patterned firing of individual neurons, the same grouping 
analysis was performed after randomly shuffling the inter-
spike intervals (ISIs) of each spike train to form new spike 
trains [6]. While the mean and variance of the firing rates 
are unaltered, cross-correlations between spike trains are 
eliminated. The shuffling was repeated 20 times and the 
maximum modularity score QC was used as an upper-bound 
for the control case. The grouping matrix S that results in the 
maximum difference Qmax between the modularity score 
for the experimental data and the control data is retained. 

 
Figure 1. Simultaneous neural and kinematic activity was recorded from a non-human primate as it reached towards and grasped four different objects in 
space (middle). Activity of a single neuron (sig 099a, M1) was grouped across all trials for each of the four object types (clockwise from top left: cylinder, 
pushbutton, mallet, sphere). The spike trains are ordered by trial number and by group assignment from the clustering analysis (green = group1; red = group 
2). The vertical dashed line at t=0 indicates time of object grasp. 
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 In order to determine the optimal number of groups and 
time scale for the clustering analysis, a golden-section 
search with parabolic interpolation [8, 9] was used to repeat 
the clustering with varying bin sizes until it converged to a 
maximal Qmax, i.e. the maximally effective grouping.  

C. Decoding Hand and Finger Kinematics 

For continuous prediction of arm, hand, and finger 
kinematics, a single Kalman filter was used to model the 
relationship between neural activity and the 18 joint angles. 
In the Kalman framework described in detail in [11], each 
joint angle is modeled as the system state, Y, and the mean 
spike firing rate during the previous 100 ms is modeled as 
the observation, X. At each discrete 20 ms time step tk, the 
observed neural activity is modeled as, 

)()()()( kkkk tqtYtHtX           (7) 

and the state estimate model is defined as, 

)()()()( 1 kkkk twtYtAtY           (8) 

where H and A are coefficient matrices, and q(t) ~ N(0,Q) 
and w(t) ~ N(0,W). Neurons with a mean firing rate of less 
than 1 Hz were removed from the population.  Mutually 
exclusive feature sets were used for training and testing, and 
results were averaged using fivefold cross-validation. 

III. RESULTS 

A. Single Neuron Analysis 

Fig. 1 shows the activity of a single neuron recorded from 
an array in M1, grouped across all trials for each of the four 
object types (cylinder, pushbutton, mallet, sphere).  
Individual trials were aligned to the time at which the 
monkey grasped the instructed object. To facilitate 
comparison across movement types, a fixed bin size of 100 
ms was used for clustering. As can be seen, the neuron 
exhibited two different firing rate responses (green, red) for 
each of the movements. This suggests that some extrinsic 
factor unrelated to differences in the task conditions may 
affect the modulation of that neuron. 

This particular neuron shows a stereotypical increase in 
firing rate during the period immediately preceding object 
grasp (t=0), as did others from M1. Visual inspection of the 
neural response for each group suggests that trials are 
separated primarily based on differences in the firing 
patterns prior to grasping. Specifically, trials in the green 
group appear to have a lower firing rate during the reach 
period than trials in the red group. 

B. Multiple Neurons, Combined Movements 

Fig. 2A shows the grouping across all neurons recorded 
from the eight FMAs. For each neuron, all trials for the four 
object types were concatenated to form a single continuous 
spike train. As can be seen in Fig. 2B, neurons were grouped 
into one of two groups: neurons that fire sporadically (green, 
mean firing rate = 4.2 Hz) and neurons with patterned 
activity or high firing rate (red, mean firing rate = 16.7 Hz). 
Grouping across all movement types yielded an optimal bin 
size of 93 ms and a corresponding ΔQ of 218.4. 

To investigate spatial patterns in the neuron groupings, 
Fig. 2C shows the location of each neuron, colored 
according to its group membership. Neuron locations were 
determined from the positions of each array and the known 

 
 

Figure 3. Normalized mutual information (MI) between group 
assignments (i.e. distribution of neurons assigned to group 1 or group 2) 
for grasping of each of the four different objects. 

    

 
 

 
Figure 2. A) Grouping of neurons from all seven arrays into one of two 
groups (green, red), ordered by neuron number in each array (top) and 
group number (bottom). B) Zooming in on a 25 sec window for sample 
M1 neurons reveals differences in neuronal response for members of each 
group, primarily based on firing rate C) Spatial distribution of neurons 
across all eight arrays. The size of each sphere represents how strongly the 
neuron belongs to its group, and color indicates group membership. Light 
blue cubes indicate the volume occupied by each FMA.  
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length of each electrode. The sphere size for each neuron 
represents how strongly the neuron belongs to its group, and 
is inversely proportional to the square of the Euclidian 
distance between the neuron’s location in the eigenspace and 
the K-means centroid of the group. No clear spatial 
organization is evident as neurons from both groups are 
distributed across all arrays and at different cortical depths.  

C. Comparing Group Membership 

To compare how the same population of neurons was 
assigned to groups for each of the different task conditions 
separately, we calculated the normalized mutual information 
(MI) which provides a measure of how similar a group 
assignment from one set of data is to another set of data 
through the following equation [10]: 
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where N is a confusion matrix whose  rows are group 
assignments for the first task condition and columns are 
group assignments for the second task condition. Nij is the 
number of nodes (i.e. neurons) in the first task condition’s ith 
group that appears in the second task condition’s jth group. 
As seen in Fig. 3, neurons were assigned to relatively similar 
groups across all four task conditions, with the smallest MI 
between the pushbutton and mallet object types. 

D. Decoding Results 

Fig. 4 shows the Pearson correlation coefficients (r) for 
continuous prediction of arm, hand, and finger kinematics as 
a function of high firing group 1 neurons (red), low firing 
group 2 neurons (green), or randomly selected neurons 
(blue). The correlation values shown are averaged across all 
18 joint angles. As can be seen, the average decoding 
accuracy using group 1 neurons was statistically 
significantly higher than that using group 2 neurons or 
randomly selected neurons (p<0.05). This difference was 
more evident with fewer neurons (for n=20: group 1, avg 
r=0.73; group 2, avg r=0.63; random, avg r=0.68) 
Therefore, this clustering method could help prune the input 
space to use neurons that are optimal for decoding. 

IV. DISCUSSION AND CONCLUSION 

It is somewhat surprising to discover that an individual 
neuron’s firing rate response varied over time for a given 
movement, even though the monkey performed fairly 
stereotypical movements for each object type. From the 
grouping analysis, we find that neurons are separated based 
on how they respond to certain phases of the task, which 
facilitates comparison of firing properties during a single 
response type. It is also informative that the optimal 
grouping resulted in two groups, which suggests that the 
elicited response may actually be influenced by some 

extrinsic binary factor independent of the object being 
grasped, e.g., whether the monkey was gazing at the target 
object during grasp or elsewhere. Without this grouping 
analysis, these trial-to-trial variations in neuronal response 
would be hidden by the more global response archetypes 
that are distributed over repeated trials. 

Grouping across neurons from all arrays, however, no 
longer distinguishes groups based on event-locked 
responses, but instead selects for differences in firing rate 
profiles over a longer timescale. In addition, this grouping 
analysis reveals that there is no obvious spatial distribution 
of neurons from different groups, either across arrays or at 
different depths. This provides more evidence for a complex 
and heterogeneous organization of the motor cortex, which 
has been found to lack strict somatotopy at a fine scale [11]. 

Lastly, it is important to note that the current clustering 
technique does not take into account delays between 
different cortical areas. To account for this, we can compute 
adjacency matrices for different sets of lags across arrays, 
and select for the optimal lag that gives the largest ΔQ. This 
could reveal additional information about network structure 
and also what delays exist between discrete cortical regions. 
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Figure 4. Correlation coefficients (r) for prediction of arm, hand, and 
finger kinematics, as a function of group 1 neurons (red), group 2 
neurons (green), or randomly selected neurons (blue). 
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