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Abstract— We investigate the use of machine learning meth-
ods based on the pre-treatment electroencephalograph (EEG) to
predict response to repetitive transcranial magnetic stimulation
(rTMS), which is a non-pharmacological form of therapy for
treating major depressive disorder (MDD). The learning pro-
cedure involves the extraction of a large number of candidate
features from EEG data, from which a very small subset
of most statistically relevant features is selected for further
processing. A statistical prediction model based on mixture of
factor analysis (MFA) model is constructed from a training
set that classifies the respective subject into responder and
non-responder classes. A leave-2-out (L2O) cross-validation
procedure is used to evaluate the prediction performance. This
pilot study involves 27 subjects who received either left high-
frequency (HF) active rTMS therapy or simultaneous left HF
and right low-frequency active rTMS therapy. Our results
indicate that it is possible to predict rTMS treatment efficacy
of either treatment modality with a specificity of 83% and a
sensitivity of 78%, for a combined accuracy of 80%.

I. INTRODUCTION

In this paper, specific EEG-based biomarkers for pre-
dicting efficacy of repetitive transcranial magnetic stimula-
tion (rTMS) therapy for major depressive disorder (MDD)
are identified and investigated. MDD is a common mental
disorder and a major cause of workplace disability with
costs very similar to those of diabetes and heart disease
[1]. rTMS therapy, approved in Canada and the USA for
use in patients with MDD, employs strong localized pulsed
magnetic fields administered through a magnetic coil placed
on the head of the subject, to induce electrical currents
in the brain to change the activity of neuron populations.
rTMS therapy has been proven to be at least as effective as
pharmacological treatment. rTMS is commonly reserved for
use when antidepressant medications prove ineffective. See,
e.g. [2]. Typically, only 40% to 50% of MDD cases will
respond to rTMS treatment. Since the duration of an rTMS
trial is on the order of 4 weeks, our proposed prediction
method could be of great value in the mental health care
setting, in that considerable time and resources can be saved
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by avoiding rTMS treatment on the significant proportion of
subjects who are likely to be non–responsive.

The few studies to date using EEG data and employing
traditional clinical data analysis have shown limited ability
to predict response to rTMS therapy. Price et al. [3] studied
correlations between clinical response (after four weeks)
and EEG features including individual alpha power (8–13
Hz), alpha frequency as well as asymmetry indexes in 39
depressed subjects. Their analysis found that there is weak
evidence of predicted correlation between these features and
clinical rating change. This and similar related literature
demonstrate the need for more efficient models for prediction
of response to rTMS therapy.

II. METHODS

The data analysis methodology used in this paper is
discussed at length in [4], [5]. Therefore, in this paper, we
only present a summary overview of the proposed machine
learning techniques.

A training set consisting of the pre-treatment resting EEG
and the corresponding response of each subject to rTMS
treatment is first collected. A machine learning procedure
is developed from this training set in the following way.
First, a large set of candidate features is extracted from
the EEG signals. The dimensionality of these features is
significantly reduced using a feature selection procedure.
These reduced-dimensionality features are then fed into a
classifier (trained using the known responses) that outputs
the predicted response. The procedure is evaluated using a
leave-n-out cross validation procedure.

A. Participants
Twenty-seven subjects diagnosed with unipolar MDD (us-

ing the internationally recognized Diagnostic and Statistical
Manual - IV diagnostic criteria) and recruited into Research
Ethics Board approved rTMS studies, were used in our
analysis. All subjects had previously failed to respond to
at least two courses of antidepressant medication therapy.
Clinical information of participants are as follows: Age at
start of treatment [years]: avg.=46.3, std=9.85, min=23.9,
max=65.8, Gender: 20 female subjects (74%) and 7 male
subjects (26%). Pre-treatment Hamilton depression rating
scale (HamD) scores were: avg.=21.1, std=3.58, min=15,
max=27.

B. rTMS Treatment
There are two modes of treatment used for this study:

active and sham. Active treatment, when applied to the
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left dorsolateral prefrontal cortex (DLPFC), consisted of 10
Hz rTMS delivered as 20 trains of eight second duration
using a figure of eight coil. Active treatment to the right
DLPFC consisted of 1 Hz rTMS delivered as two trains of 60
second duration using a round coil. Intensity for active rTMS
was set at 110% of motor threshold, defined as the lowest
energy capable of inducing activation of the abductor pollicis
brevis muscle of the contralateral thumb. Sham treatment
was administered with one of the rTMS coils held at 90
degrees to a tangent at the scalp site and intensity set at
a level sufficient to create a click audible with earplugs in
place. Treatments were administered using a Dantec Magpro
daily for 10 sessions over two weeks to a site five cm
anterior, parasagittally, to the activation site for the abductor
pollicis brevis muscle. True left, sham right (TLSR) therapy
was administered to 18 subjects, while true left and true
right (TLTR) therapy was administered to 9 subjects. The
selection was done randomly. None of the subjects received
sham rTMS over both the left and the right hemispheres.
All subjects also received concurrent ‘selective serotonin
reuptake inhibitor’ (SSRI) antidepressant medication during
rTMS therapy, and for an additional four weeks thereafter.

C. Definition of Response

Subjects were classified as “responders” if the Hamilton
Depression Rating (HamD) score at six weeks showed at
least a 50% improvement over the pre-treatment HamD
score. The HamD is a well-accepted means of quantifying
the severity of depression. For our purposes, the HamD
percentage change value is discretized into two values (or
classes), corresponding to responder (R) when it is larger
than or equal to 50%, and non-responder (NR) otherwise.

D. EEG Recordings and Quantitative Features

The international 10-20 EEG electrode placement system
was used, referenced to linked ears. Data were recorded with
a sampling frequency of 205 Hz. These data were collected
after approximately 10 days off medication and just before
beginning rTMS treatment. The data from 16 electrodes Fp1,
Fp2, F3, F4, F7, F8, T3, T4, C3, C4, T5, T6, P3, P4, O1 and
O2 were used in this study. A QSI-9500 EEG system is used,
which filters the signals between [0.5Hz-80Hz] and applies
a notch filter at 60 Hz. The patient was in a semi-recumbent
position in a sound attenuated, electrically shielded room and
an experienced EEG technician prompted patients on signs
of drowsiness. Sessions were arranged in the mornings and
patients were requested to avoid coffee, drugs, alcohol and
smoking immediately prior to the recording. For each patient,
a maximum of 3 spontaneous or resting EEG data files each
of 3.5 minutes duration were collected while the subject’s
eyes were open.

For de-artifacting, the data were partitioned into segments
of 1 sec. duration. If the input signal on any electrode
saturated the acquisition hardware, the corresponding seg-
ment was rejected. The signals were then digitally bandpass
filtered between 2.5 Hz and 39 Hz to partially mitigate

the effects of eye movement, eye blinks and high-frequency
muscle artifacts.

For each EEG file, the first 90 seconds of de-artifacted
data are used. The selected data are divided into 5 epochs
of 30 sec. duration with 50% overlap. Power spectral ratios
(which become candidate features to be described later) are
calculated using a Welch modified periodogram method over
each epoch. The individual windows required for this process
are obtained by dividing each epoch into windows of 2
sec. duration with 72% overlap1. These settings result in a
nominal five epochs per file, times three files per subject to
give 15 epochs per subject.

The set of Nc candidate features extracted from each
data epoch consists of the anterior/posterior power ratios at
various frequencies, and between various electrode pairs, in
addition to some ratios involving more than two electrode
pairs. The frequency resolution is 1 Hz and the processing
bandwidth of 4 Hz up to 36 Hz is used, resulting in a value
of Nc = 1452 candidate features. PSD ratios were expressed
as base-10 logarithms. All candidate feature values were
then normalized using their corresponding z-score value. The
means and standard errors required for this process were
calculated from the corresponding features measured from
91 normal i.e. healthy subjects.

E. Feature Selection

After normalization, the most relevant features are selected
using the supervised, greedy method of [6]. This procedure
is used to reduce the feature set from Nc = 1452 candidate
features down to a set of only Nr = 4 most relevant features.
See [4] for further details.

F. Classification and Performance Evaluation

Let the set of reduced features for the ith epoch for a
particular subject be assembled into a vector xi ∈ RNr

and the corresponding discrete-valued response or class be
denoted by yi ∈ [R, NR], where R = responder and NR =
non–responder. The resulting set {xi, yi}, i = 1, . . . ,Mt,
constitutes a training set, where Mt is the total number of
available epochs over all subjects. In this study one of the
subject’s EEG was heavily artifacted, so only 10 instead
of the nominal 15 epochs were available. This results in
a value of Mt = 400. Because the variance of features
extracted across intra-subject epochs is large, all epochs were
considered to be statistically independent.

In our study, we used the mixture of factor analysis
(MFA) technique [7] to build the response predictor model
(classifier), based on the maximum likelihood classification
rule. This method is used previously in [5] to build statistical
diagnosis models to discriminate psychiatric disorders.

Since we have multiple epochs for each subject, the final
prediction result for each subject is obtained by averaging
the MFA likelihood values over all available epochs for that

1The 50% and 72% overlap figures were chosen somewhat arbitrarily
and can be altered with reasonable limits without significant impact on
performance.
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TABLE I
PREDICTION PERFORMANCE.

predicted predicted % correct
NR R

actual NR 15 3 83.3%
actual R 2 7 77.8%

avg. = 80%

subject. The resulting averaged value is then quantized to
generate a binary (i.e. R or NR) response value.

Kernelized principal component analysis (KPCA) [8]
is used to visualize the clustering behaviour in a two-
dimensional subset of the feature space. This gives us insight
into the clustering and discriminating performance of the
feature set, and aids in the identification of outliers.

The performance of the overall structure was evaluated
using a leave-n-out (LnO) cross–validation process. In this
study, n = 2 resulting in 14 folds. This is close to a 10–fold
scenario, as suggested by [9]. In order to ensure unbiased
results, classifier parameters were optimized, and features
were selected, independently in every fold. This procedure
ensures that the training process is completely independent
of the data used for testing [9].

III. RESULTS

Table I shows the prediction performance in the form of
a classification table, when Nr = 4 discriminating features
are used. There are 18 subjects in NR group and 9 in the
R group, for which 6 were treated with the TLSR, and 3
with the TLTR modality. The specificity is 83.3% and the
sensitivity is 77.8%. When averaged, these figures result in
an overall prediction accuracy of 80%.

A. List of Discriminating Features

A list of discriminating features is shown in Table II.
In this table, anterior/posterior PSD ratio features involving
more than two electrodes are calculated as log10 of the
product of the numerator powers over the product of the
denominator powers. Columns 3 and 4 reflect the means and
standard deviations (std) of NR and R groups. These values
however depend on the pre-processing, feature extraction and
normalization procedures. To calculate standard deviation,
we first determined the intra–subject average of each discrim-
inating feature over all subject epochs, and then calculated
the inter-subject standard deviation of the averaged feature
values. The features are shown sorted based on their Fisher
discriminant ratio (FDR) [10]. The FDR is defined as the
squared difference of the means of that feature between the
R and NR groups, normalized to the sum of the variances of
the two groups. It is noted that FDR ranking gives a rough
indication of the relevance of the feature, and in this study
is used only for the purpose of ordering the features in this
table. A feature appears in Table II if it is chosen at least
once over all folds of the LnO cross-validation procedure,
and if its FDR value is greater than approximately 0.8.

One may be tempted to consider some form of combina-
tion of the FDR of individual features as an indication of the

resulting performance of the proposed predictor. However,
this exercise involves a sequence of one-dimensional perfor-
mance measures and as such is not an adequate performance
indicator. The joint discriminating power of the features is
only evident when observing the separation of the clusters in
the (multiple) Nr–dimensional feature space. Thus care must
be exercised when observing the data in columns 3 and 4 of
Table II.

The clustering behaviour of the feature space is shown in
Fig. 1. This shows a scatter plot of Mt = 400 available pre-
treatment training samples projected onto only the two non-
linear principal components (PC), selected on the criterion
of maximum mutual information with the response variable.
This figure was generated using the KPCA method with a
Gaussian kernel. This figure shows one point per epoch, or a
nominal 15 points per subject. Averaging the locations of the
projected data samples belonging to each subject results in
Fig. 2, where each subject is shown with only a single point.
Each subject is arbitrarily assigned an exclusive index within
the range [1, . . . , 27]. For clarity of presentation, in Fig. 1 we
label only the points corresponding to the two subjects 16
and 21 (R and NR respectively), to show how the projected
data vary between epochs for a given subject. These two
subjects were arbitrarily selected with one subject in each
class. Each point in Fig. 2 is labelled with its corresponding
subject index. The separation of the classes is clearly evident
from the figure.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

16

16

16
16

16
161616

16
16

1616

16
16

16
21

21
21

21

21

21

21

21

21
21

21
21

21

2121

axis 1, (PC1)

ax
is

 2
, (

P
C

5)

 

 
NR
R

Fig. 1. Epoch-wise scatter plot of the Nr-dimensional feature space derived
from the pre-treatment EEG data, projected onto two major nonlinear
principal components. There are a nominal 15 epochs per subject. Nr = 4.

IV. DISCUSSION AND CONCLUSIONS

We have demonstrated a machine learning capability,
based on the pre–treatment EEG, that can predict the re-
sponse of a subject to rTMS therapy for MDD, with accura-
cies on the order of 80%. This could have clinical utility
in administering rTMS therapy only to a targeted group
of subjects who have been determined to have responsive
characteristics, and therefore increase the treatment efficacy
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TABLE II
A LIST OF MOST DISCRIMINATING FEATURES, SHOWING THE MEAN AND STANDARD DEVIATION (STD) OF EACH FEATURE (AFTER Z-SCORE

NORMALIZATION) OVER THE NON-RESPONDER (NR) AND RESPONDER (R) GROUPS.

average (± std) average (± std)
# Selected EEG-driven Numerical Feature for NR group for R group FDR
1 Front-to-Back PSD-ratio at f=6Hz, T3C3/P3O1 0.832 (± 0.662) -0.408 (± 0.615) 1.883
2 Front-to-Back PSD-ratio at f=6Hz, F7F3/P3O1 0.104 (± 0.437) -0.912 (± 0.634) 1.743
3 Front-to-Back PSD-ratio at f=6Hz, Fp1F7/P3O1 0.273 (± 0.478) -0.666 (± 0.597) 1.506
4 Front-to-Back PSD-ratio at f=6Hz, T3C3/T5P3 0.592 (± 0.691) -0.361 (± 0.541) 1.181
5 Front-to-Back PSD-ratio at f=6Hz, T3/T5 0.746 (± 0.656) -0.073 (± 0.413) 1.115
6 Front-to-Back PSD-ratio at f=6Hz, F3/O1 0.319 (± 0.592) -0.726 (± 0.794) 1.112
7 Front-to-Back PSD-ratio at f=24Hz, C3/O1 0.191 (± 0.553) -0.552 (± 0.463) 1.062
8 Front-to-Back PSD-ratio at f=23Hz, C3/O1 0.195 (± 0.546) -0.501 (± 0.4) 1.058
9 Front-to-Back PSD-ratio at f=7Hz, T3C3/P3O1 0.548 (± 0.59) -0.17 (± 0.403) 1.011
10 Front-to-Back PSD-ratio at f=6Hz, Fp1/O1 0.581 (± 0.621) -0.37 (± 0.759) 0.938
11 Front-to-Back PSD-ratio at f=6Hz, C3/O1 0.542 (± 1.032) -0.629 (± 0.7) 0.882
12 Front-to-Back PSD-ratio at f=8Hz, T3C3/P3O1 0.617 (± 0.504) 0.102 (± 0.265) 0.82
13 Front-to-Back PSD-ratio at f=29Hz, C3T5/P3O1 -0.029 (± 0.639) -0.68 (± 0.351) 0.799
14 Front-to-Back PSD-ratio at f=28Hz, C3/O1 0.222 (± 0.458) -0.553 (± 0.737) 0.797
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Fig. 2. Subject-wise scatter plot which is obtained from Fig. 1 by averaging
all points (epochs) corresponding to each subject.

for this form of therapy. Since the number of subjects in
this study is small, our findings must be replicated over a
much larger sample before any definitive conclusions can be
drawn.

We noticed that the feature selection algorithm of [6] is
sensitive to many parameters, including the number Nc of
candidate features, the feature normalization procedure, as
well as the ratio of the number of subjects in the R versus NR
groups. However, it was noted that any overall performance
degradation due to such changes in selected features was
not severe. The fact that selected features are sensitive in
this way suggests that the feature selection procedure of [6]
is suboptimal; indeed, this may be a consequence of the
greedy nature of the algorithm. An avenue for future work is
the investigation of alternative methods of feature selection
for this application. In addition, since the effectiveness of
rTMS therapy may be related to technical factors such as
the frequency, intensity and site of stimulation, a further
suggestion for future work is the determination of optimal

settings for these parameters.
We examined using Nr = 5, 6, 8 discriminating features

instead of Nr = 4. The prediction performance were un-
changed indicating that the prediction methodology is robust
and is not very sensitive to the choice of Nr.

Over–fitting is always a consideration in any machine
learning application. An indication that over–fitting has not
been a dominant factor in this application is provided by
Fig. 2. Here, we see that a straight–line boundary (which is
specified in terms of only two parameters) is sufficient to
separate the two classes. Since the number of training points
(in this case 27) is large in comparison to the number of
parameters necessary to describe the boundary, it is unlikely
that the boundary has over–fit the data.
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