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Abstract— In this paper, we show the results of a study in 

which we try to test the feasibility of using radial basis 

functions neural networks (RBFs for short) in clinical decision 

support systems. We have implemented two instances of RBFs 

in order to diagnose possible prostate cancer cases from a 

clinical database. To give an idea about how good the results 

are, we follow a two-fold approach. On the one hand they are 

independently evaluated in terms of accuracy, sensitivity and 

specificity and on the other hand they are compared with the 

performance over the same database of a classifier widely 

applied to the medical field problems, as it is multi-layer 

perceptron (MLP). The experimental results show that RBFs 

are a useful tool to build up clinical decision support systems. 

I. INTRODUCTION 

rtificial neural networks (ANNs) are a tool from 

machine learning theory that has been widely used to 

solve classification and pattern recognition problems. There 

are several different implementations of these algorithms, 

MLPs, RBFs, Learning Vector Quantization networks 

(LVQs), Self-organizing maps (SOMs), Adaptive Resonance 

Theory based networks (ARTs), etc [1]. However, as the 

research on them has advanced, their application has been 

focused on certain areas depending on their features and the 

way they perform.  

ANNs are able to model complex biological systems by 

revealing relationships among the input data that cannot 

always be recognized by conventional analyses [2]. 

Cancer is a major public health concern in the developed 

countries. A total of 1,529,560 new cancer cases and 

569,490 deaths from cancer were expected to occur in the 

United States in 2010 [3]. From those, approximately 

192,000 men were diagnosed with prostate cancer, and 

27,000 of them were expected to die from this disease, what 

makes prostate cancer the second most common cause of 

death caused by cancer, among men aged 80 years and older 

[4]. 
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As it is the case of many other kinds of cancer, early 

detection of prostate cancer symptoms is the best way to 

treat the disease at its first stages reducing the mortality [5]. 

The survival rate of prostate cancer soars from 34% when 

the cancer is detected at the advanced stage to nearly 100% 

at the early stage [6]. 
Clinical decision support systems (CDSSs) can be useful 

to help specialists in the difficult task of diagnosis [7]. A 

second expert opinion, even if it is from an artificial entity or 

software acting as a human expert, can support the decision 

of the doctor. In other cases the clinical decision support 

system can suggest alternative tests to increase the degree of 

certainty in a specific diagnosis. 

In this project we face the medical problem of prostate 

cancer diagnosis developing a clinical decision support 

system that may help the specialist to improve the certainty 

in the diagnosis avoiding unnecessary biopsies. 

After previous researches, and reviewing the literature 

about the use of different ANNs implementing these 

systems, we noticed that MLPs have been widely used in 

researches that imply the use of automated methods on 

clinical environments, i.e. support the cancer diagnosis [8]–

[9]. This is not the case of RBF neural networks that have 

been barely used for this aim. In fact, most of the researches 

related to these networks are focused on, developing new 

training algorithms, testing new radial functions as 

transference functions, etc. So, there is a noticeable lack of 

researches on using this type of ANN as a classifier in the 

clinical field. 

Since we think that RBFs features make them suitable for 

this purpose, we have implemented two different RBF neural 

networks and used them in a system for supporting doctors 

diagnosing prostate cancer. Once it is done, we compare the 

results with previous experiences using MLPs for the same 

task. 

In the next sections we will give in first place an 

explanation about RBFs: their fundamentals and the 

motivation behind their use. Next, the experimentation stage 

is explained, describing the implementation of RBFs and 

MLP used. Finally, we show the obtained results using RBFs 

in a prostate cancer diagnosis support decision system. 

II. RADIAL BASIS FUNCTIONS DESCRIPTION 

Radial basis function networks were first introduced by 

Broomhead & Lowe as an alternative to MLPs in 1988, for 

the aim of making the adjustment of nonlinear functions [9]. 

RBF’s structure is quite similar to MLPs, with an input 
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and an output layer respectively. However there is a 

difference in the number of intermediate, or hidden, layers. 

RBFs have only one hidden layer while MLPs could have 

more than one. So, in RBFs we can distinguish 3 different 

layers (Fig. 1): 

- Input layer: where input signals arrive. No processing 

of them is done at this stage. 

- Hidden layer: neurons or nodes within this layer receipt 

the input signals from the previous layer and perform a local 

nonlinear transformation over them. 

- Output layer: a linear combination of the outputs from 

the activated nodes in the previous layer is done. This will 

be the net’s output. 

 
The nodes within the hidden layer, implement as local 

transference function a radial basis function that usually is a 

sort of Gaussian function. By means of these radial 

functions, each of these nodes contributes to draw a solution 

region within the global input pattern space. These 

individual RBF contributions could be depicted as circles 

(Fig. 2a), and the decision region could be seen as the space 

result of all circles union, one for each neuron in the hidden 

layer (Fig. 2b). 

The input patterns placed inside these regions, are those 

that produce a significant net’s output. It is easy to see that 

the use of this kind of functions allows us to build complex 

solution regions, using only little number of nodes in the 

hidden layer. 

Each node represents a class and each class is represented 

by two parameters (     ).    represents the centroid of the 

class, the middle point in the weights associated to that 

neuron, where the radial function has its maximum value. 

On the other hand,    is the spread of the radial basis 

function associated to that neuron, which can be seen as the 

standard deviation of the radial function. 

When the input values arrive to this layer, each node 

calculates the distance between its centroid and the input 

patterns values. Let    be this value of distance (1). 

 

   √       
         

           
    (1) 

 

The next step is to apply a radial basis function, as a local 

nonlinear activation function, to the distance values in order 

to obtain the activation value of each node. Let   be the 

radial basis function of the node (2), a Gaussian function in 

our example, and       be the the output of the hidden layer 

(3). 
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We can notice that, if the input values are similar to the 

centroid of a hidden neuron, the distance value for this node 

will be close to 0, and therefore the output of the Gaussian 

function will be almost 1. The hidden layer and the output 

layer connections are weighted with a value w that will be 

adjusted by a learning algorithm, usually based on the 

output’s error estimation, like it is the case of nets based 

only in backpropagation like MLPs. Each processing 

element in this layer obtains its final value as a linear 

combination of the previous layer outputs and the weights of 

the links between the units of both layers, being       the 

output value of each neuron on the output layer, and    a 

bias value (4). 

 

      ∑         
 
                          (4) 

 

In (4) m is the number of nodes in the hidden layer and k 

the number of nodes in the output layer. 

III. EXPERIMENTS 

To assess the performance of RBFs diagnosing prostate 

cancer, we have implemented two different versions of RBF. 

Later we tested each one using a diagnostic tests database, 

evaluating the results independently. Besides this, we 

compare these independent results with the performance of a 

previously implemented MLP as a reference. 

A. RBFs design 

The first version of RBF implemented is a probabilistic 

neural network (PNN). PNNs are RBFs that behave as the 

main model previously explained but with a significant 

difference on the meaning of the output values. The hidden 

layer computes distances from the input patterns to the 

 
 

Fig. 1 RBF neural networks architecture. 

a)                                                 b) 

       

Fig. 2 a) Decision areas of each node. b) Combination of all hidden 

neuron radial basis function contributions. 
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centroid of each neuron. The second layer adds these 

contributions for each class of inputs to produce, as its net 

output, a vector of probabilities. Finally, a compete transfer 

function on the output of the second layer, chooses the 

maximum of these probabilities, and produces a 1 for that 

class and a 0 for the other classes. Consequently, the 

network classifies an input vector into a specific class 

because that class has the maximum probability of being 

correct. PNNs have been successfully used in classification 

problems [10]. 

The second model of RBF implemented is a general 

regression neural network (GRNN) [11]. In this case the 

hidden layer has as many neurons as there are target vectors 

within the input set. Each neuron’s weighted input is the 

distance between the input vector and its weight vector, and 

each neuron’s net input is the product of its weighted input 

with its bias. Each neuron’s output is its net input passed 

through a radial basis function. If a neuron’s weight vector is 

equal to the input vector, its weighted input will be 0, its 

net’s input will be 0, and its output will be 1. If the distance 

between a neuron’s weights vector and the input vector 

equals to the spread value, its weighted input will be the 

spread, and its output will be 0.5. The second layer also has 

as many neurons as input/target vectors. 

In each case, the network tends to give as an output the 

target vector that is closer to the input vector in each case. 

B. Testing and results analysis 

Our clinical database consists of 950 samples from 

patients who have been tested by expert urologists to check 

if they suffer from prostate cancer. For 381of these patients, 

the tests showed that they have prostate cancer. This 

diagnosis was later confirmed by means of a biopsy study 

for each patient.  

Besides the diagnostic results, the database also contains 

values for more 14 characteristics for each patient. These 

characteristics are respectively related with patients personal 

info (age) and the results for each patient, of tests commonly 

used by urology experts for prostate cancer diagnosis 

(Prostate-specific antigen (PSA) in blood level, PSA density, 

prostate volume, rectal examination results, transitional zone 

flow, zone transitional volume, intralesional IR, 

intraprostatic IR, periprostatic IR, state of the prostate 

capsule, state of the seminal vesicles, quotient, and 

prostateseminal angle). 

Not all the fields are numerical, 5 of them are filled using 

a subset of medical terms. In order to use these text fields, 

we have related each term with a number. For example, 

adenoma, LD nodule, LI nodule and bilateral nodule, which 

are values of “rectal test results” fields, are translated to 1, 2, 

3 and 4 respectively. On the other hand, the diagnosis result 

has two possible values: “yes” or “no”, which we have 

identified with 1 and 0 respectively and this will be the 

output of the designed CDSS. 

In this work we have divided the input data in two non-

overlapping sets. The first one contains the 85% of the input 

samples, being used to carry out the training and testing 

processes applying the 10-fold cross validation technique. 

The second set consists of the other 15% input samples 

and it is used to validate the classifier configuration, 

obtained at the training and test stage. 

There are a set of customizable parameters whose best 

values should be obtained by trial. For this reason, we wrote 

an executable script to test in a batch way several parameters 

for PNN and GRNN networks, and compiling metrics after 

the execution of each one. This process allows us to choose 

the proper parameters configuration that gives us the best 

performance rates of each ANN. 

Firstly, for the reference MLP, we tried to find the number 

of hidden layers and the suitable size of each net’s layer. We 

have tested designs that contain 1 and 2 hidden layers with a 

range from 5 to 20 neurons in each layer. We also looked for 

the transfer function that will control the input data through 

the net, testing the tan-sigmoidal, log-sigmoidal, and lineal 

transfer functions. Other tested parameters were the net’s 

learning rate and the momentum. The configuration that 

gave the best MLP performance consists of 1 hidden layer of 

13 neurons and 1 on the output layer, using the tan-

sigmoidal as a transfer function with a learning rate value of 

0.2 and a momentum of 0.3, and performing a training 

process of 10000 epochs, Table I. 
 

TABLE I 

Reference MLP configuration parameters 

Layers Neurons Transfer 

Function 

Training 

Algorithm 

Epochs 

2 [13 1 ] Tangent-
sigmoid 

Levenberg-
Mardquardt 

10000 

 

For the RBFs we tested different parameters combinations 

that include the spread and ridge values of the radial 

functions, the minimum standard deviation, and the number 

of neurons inside the hidden layer, Table II. 

 
TABLE II 

PNN and GRNN configuration parameters 

 Layers Neurons Radial 

Fnct. 

Ridge Spread Stdrd. 

Dev. 

Epochs 

GRNN  2 [10 1]   
   

 ⁄   1.0E-8 0.1 0.1 5000 

PNN 2 [10 1]   
   

 ⁄   1.0E-8 0.1 0.1 3000 

 

Finally we use the testing set to evaluate each classifier 

separately. We are interested not only in the accuracy rate of 

each classifier, but also in sensitivity and specificity rates, 

since we are performing a diagnostic task within a CDSS. 

The results from the execution of each classifier can be seen 

in Table III. 

 
TABLE III 

Results (in percentage) of the testing executions 

 MLP GRNN PNN 

Accuracy  71.05 81.05 85.26 

Sensitivity 46.96 57.57 74.24 

Specificity 83.87 93.54 91.12 
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On Table III we can see that both RBFs obtain better rates 

of accuracy than MLP, but the main improvement achieved 

using these nets is the growth in the rates of specificity and 

sensitivity. These are remarkable achievements because they 

have a two-fold direct consequence: an improvement of 

patients’ quality of life and a reduction of the costs that are 

associated with diagnostic and treatment tasks. Since we are 

dealing with prostate cancer diagnostic data, the improved 

specificity and sensitivity rates give an idea about the 

reduction of the needed number of biopsies to be performed 

due to misclassification of healthy patients, and the 

reduction of people who have prostate cancer and are 

wrongly diagnosed, respectively. 

Analyzing all the measures together, we can see that PNN 

is the most suitable classifier, among the tested ones, to 

implement our prostate cancer decision support system, 

despite of not obtaining the best values for all the measured 

rates. 

IV. CONCLUSION 

The goal of this paper is to evaluate the utility and the 

performance of RBF neural networks, within a clinical 

environment, as a basis of a CDSS for prostate cancer 

diagnosis. We have chosen two different RBFs algorithms, a 

probabilistic neural network and a generalized regression 

neural network, to carry out the experimentation stage in 

order to test as much features of these algorithms as 

possible. These ANNs have been trained and tested using a 

medical database with information from clinical tests applied 

to patients with suspicions of suffering from prostate cancer. 

We collected statistical measures of the performance of 

the implemented RBFs to evaluate them, and from a MLP as 

a reference of a well-known and widely applied to diagnostic 

tasks classifier. Not only accuracy, but also sensitivity and 

specificity rates (both are better in RBF neural networks) 

prove that RBF neural networks, although their design can 

be more complex, are an interesting alternative to have in 

mind in the design of CDSSs. 

 As future work, we will continue studying about RBF 

neural networks and their application as classifiers in CDSSs 

and, in particular, in prostate cancer diagnosis. We would 

also like to compare RBF neural networks performance to 

other artificial intelligence techniques for classifying like 

SVMs, or classifier assembling methods as boosting. Our 

final objective is to develop a CDSS for aiding in the 

diagnosis of prostate cancer with high rates of accuracy and 

reliability. 
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