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Abstract— Multimodal data, especially imaging and non-
imaging data, is being routinely acquired in the context of
disease diagnostics; however computational challenges have
limited the ability to quantitatively integrate imaging and
non-imaging data channels with different dimensionalities for
making diagnostic and prognostic predictions. The objective of
this work is to create a common subspace to simultaneously
accommodate both the imaging and non-imaging data, called a
metaspace. This metaspace can be used to build a meta-classifier
that produces better classification results than a classifier
that is based on a single modality alone. In this paper, we
present a novel Supervised Regularized Canonical Correlation
Analysis (SRCCA) algorithm that (1) enables the quantitative
integration of data from multiple modalities using a feature
selection scheme, (2) is regularized, and (3) is computationally
cheap. We leverage this SRCCA framework towards the fusion
of proteomic and histologic image signatures for identifying
prostate cancer patients at risk for biochemical recurrence
following radical prostatectomy. For a cohort of 19 prostate
cancer patients, SRCCA was able to yield a lower fused
dimensional metaspace comprising both the histological and
proteomic attributes. In conjunction with SRCCA, a random
forest classifier was able to identify patients at risk for
biochemical failure with a maximum accuracy of 93%. The
classifier performance in the SRCCA space was statistically
significantly higher compared to the fused data representations
obtained either with Canonical Correlation Analysis (CCA) or
Regularized CCA.

I. INTRODUCTION

With the plentitude of multi-scale, multi-modal, disease

pertinent data being routinely acquired for diseases such as

breast and prostate cancer, there is an emerging need for

powerful data fusion (DF) methods to integrate the multiple

orthogonal data streams for the purpose of building diagnos-

tic and prognostic meta-classifiers [1]. A major limitation

in constructing integrated meta-classifiers that can leverage

imaging (histology, MRI) and non-imaging (proteomics, ge-

nomics) data streams is having to deal with different data

representations spread across different scales and dimension-

alities [1]. This creates a need to represent the different

modalities in a common subspace called a metaspace.

Several researchers have previously attempted to fuse such

heterogeneous data [2] but all of these DF techniques have

their own weaknesses in creating an appropriate metaspace
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that can simultaneously accomodate multiple imaging and

non-imaging modalities. Generalized Embedding Concate-

nation [3] relies on dimensionality reduction methods that

face the risk of extracting noisy features which degrade the

metaspace [4]. Other DF techniques, including consensus

embedding, multi-kernel graph embedding, and boosted em-

bedding [2] have yielded promising results, but come at a

high computational cost.

Canonical Correlation Analysis (CCA) and its regularized

version, (RCCA), are DF techniques for fusing two modal-

ities. They capitalize on the knowledge that the different

modalities represent different sets of descriptors for charac-

terizing the same object. In recent years, CCA has been used

to find linear relationships between the pixel values of images

and the text attached between these images [5]. RCCA has

been used to study expressions of genes measured in liver

cells and compare them with concentrations of hepatic fatty

acids in mice [6].

CCA is a simple technique but it suffers from over

fitting when the modalities have large dimensions. RCCA

is a modification to CCA that prevents over fitting but this

procedure is computationally very expensive. Both these

algorithms also fail to take complete advantage of class label

information, when available. In this paper, we present an ef-

ficient Supervised RCCA (SRCCA) algorithm that performs

DF without being plagued by issues of over fitting while also

being computationally cheap. Moreover, it makes better use

of labeled information that can significantly help stratify the

data in the metaspace.

In this work, we apply SRCCA to the problem of pre-

dicting biochemical recurrence in prostate cancer (CaP) pa-

tients, following radical prostatectomy, by fusing histologic

imaging and proteomic signatures. Biochemical recurrence is

commonly defined as a doubling of Prostate Specific Antigen

(PSA), a key biomarker for CaP. However, the nonspecificity

of PSA leads to over-treatment of CaP, resulting in many

unnecessary treatments, which are both stressful and costly

[3]. Thus, the overarching goal of this study is to leverage

SRCCA to construct a fused histologic, proteomic marker for

predicting biochemical recurrence in CaP patients following

surgery.

Our main contributions in this paper are:

• A novel data fusion algorithm, SRCCA, that builds an

accurate metaspace representation that can simultane-

ously represent and accommodate two heterogeneous
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Fig. 1. Multi-modal patient data (top row: relapsed case, bottom row: non-relapsed case). (a), (f) Original prostate histology section showing region of
interest, (b), (g) Magnified ROI showing gland segmentation boundaries, (c), (h) Voronoi Diagram (d), (i) Delaunay Triangulation depicting gland architecture,
(e), (j) Plot of the proteomic profile obtained from the dominant tumor nodule regions (white box in (a), (f) respectively) via mass spectrometry.

imaging and non-imaging modalities.

• Leveraging SRCCA to build a meta-classifier to predict

risk of 5 year biochemical failure in prostate cancer

patients following radical prostatectomy by integrating

histological image and proteomic features.

II. SUPERVISED REGULARIZED CANONICAL

CORRELATION ANALYSIS (SRCCA)

A. Canonical Correlation Analysis (CCA)

CCA [5] is a way of using cross-covariance matrices to

obtain a linear relationship between two multidimensional

variables, X ∈ R
n×p and Y ∈ R

n×q , where p and q are the

number of features in X and Y and n is the number of overall

samples. CCA obtains two directional vectors wx ∈ R
p×1

and wy ∈ R
q×1 such that Xwx ∈ R

n×1 and Y wy ∈ R
n×1

will be maximally correlated. It is defined as the optimization

problem [5]:

ρ = max
wx,wy

wT
xCxywy

√

wT
xCxxwxwT

y Cyywy

(1)

where Cxy ∈ R
p×q is the covariance matrix of the matrices

X and Y , Cxx ∈ R
p×p is the covariance matrix of the matrix

X with itself and Cyy ∈ R
q×q is the covariance matrix

of the matrix Y with itself. The solution to CCA reduces

to the solution of the following two generalized eigenvalue

problems [7]:

CxyC
−1

yy Cyx = λCxxwx (2)

CyxC
−1

xx Cxy = λCyywy (3)

where λ is the generalized eigenvalue representing the

canonical correlation, and wx and wy are the corresponding

generalized eigenvectors. CCA can further produce exactly

min{p, q} orthogonal embedding components (sets of Xwx

and Y wy) which can be sorted in order of decreasing

correlation, λ.

DF is performed as described in Foster et al. [8]. When

the Xwx and Y wy are maximally correlated, each modality

represents similar information. In order of decreasing λ, the

top d embedding components can be chosen to represent the

two modalities in a metaspace.

B. Regularized Canonical Correlation Analysis (RCCA)

When n << p or n << q, the features in X and Y

tend to be highly collinear. This leads to ill-conditioned

covariance matrices Cxx and Cyy such that their inverses

are no longer reliable. The greatest λ’s tend to be nearly 1

and the remaining d− 1 dimensions do not provide any new

meaningful information.

RCCA [6] corrects for noise in X and Y by assuming

first that X and Y are contaminated with NX ∈ R
n×p

and NY ∈ R
n×q. Since the p and q columns of NX and

NY , respectively, are gaussian, independent and identically

distributed, all combinations of the covariances of the p

columns of NX and q columns of NY will be 0 except the

covariance of a particular column vector with itself. This

variance of each column of NX and NY is labeled λx and

λy . The matrix Cxy will not be affected but the matrices Cxx

and Cyy become Cxx+λxIx and Cyy+λyIx. The solution to

RCCA becomes the solution to these generalized eigenvalue

problems [7]:

Cxy(Cyy + λyIy)
−1Cyx = λ(Cxx + λxIx)wx (4)

Cyx(Cxx + λxIx)
−1Cxy = λ(Cyy + λyIy)wy (5)

The noise parameters next have to be chosen. For i ∈
{1, 2, ..., n}, let wi

x and wi
y denote the weights calculated

from RCCA when samples Xi and Yi are removed. λx and

λy are varied in a certain range θ1 ≤ λx, λy ≤ θ2 and chosen

via the optimization [6]:

max
λx,λy

[

corr({Xiw
i
x}

n
i=1

, {Yiw
i
y}

n
i=1

)
]

(6)
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C. Extending RCCA to SRCCA

SRCCA chooses λx and λy using a supervised feature

selection method (Wilks Lambda Test [9]). The data in the

metaspace, γ = Xwx or Y wy , can be split using its labels

into α and β, where α contains the n1 samples that belong

to Class 1 and β contains the n2 samples that belong to

Class 2. These three vectors are then used to calculate Wilks

Lambda (Λ), which is defined as the ratio of within group

variance to total variance, and minimized as:

min
λx,λy

(α− 1ᾱ)T (α− 1ᾱ) + (β − 1β̄)T (β − 1β̄)

(γ − 1γ̄)T (γ − 1γ̄)
(7)

where α ∈ R
n1×1, β ∈ R

n2×1, γ ∈ R
n×1 = [α β], and ᾱ,

β̄ and γ̄ are denoted as the means of vectors α, β and γ

respectively. A lower Λ value will indicate that the data will

be more discriminatory in the lower dimensional metaspace.

D. Computational Complexity

Assume v potential λx and λy sampled evenly between θ1
and θ2 . Given ϕ = min{p, q}, RCCA has a computational

complexity of vnϕ! because RCCA requires CCA, which has

a computational complexity of ϕ! (based on the source code

in [10]) to be computed n times, where n is the sample size,

over v intervals. SRCCA only requires CCA to performed

once each interval, leading to a much cheaper computational

complexity of vϕ!.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description

19 CaP patients at the Hospital at the University of Penn-

sylvania were identified, all of whom had gland resection.

10 of these patients had biochemical recurrence within 5

years following surgery (Non-Failure) and the other 9 did

not (Failure). For each patient, a representative histology

section was chosen and the tumor nodule identified. Mass

Spectrometry (MS) was performed at this site to yield a

protein expression vector. The aim of this experiment is to

combine quantitative image descriptors on histology of the

tumor with the proteomic vector to build a meta-classifier to

distinguish the patients at risk of recurrence from those who

are not.

B. Proteomic Feature Selection (denoted φP ∈ R
19×953)

Active genes encode proteins that are present in a tissue

sample, and these proteins can be measured and serve as

quantitative markers of cancer activity. For this study, MS

was used to measure the relative abundance of peptides

in cancerous regions of the tissue. A high dimensional

feature vector was obtained, characterizing each patient’s

protein expression profile at the time of treatment. This data

underwent quantile normalization, log(2) transformation, and

mean and variance normalization on a per-protein basis.

C. Quantitative Histologic (denoted φH ∈ R
19×151) Feature

Extraction

Following an automated gland segmentation process used

to define the gland centroids and boundaries (see [11] for

details), morphological (denoted φM ∈ R
19×100) and archi-

tectural (denoted φA ∈ R
19×51) image features (quantifying

glandular arrangement) were extracted from the dominant

tumor region on histology [3].

D. Fusing Proteomic, Histologic Features for Predicting

Biochemical Recurrence in CaP Patients Post-Surgery

We perform CCA, RCCA and SRCCA on the non-imaging

modality, φP , and the selected imaging modality, φJ , where

J ∈ {H,M,A}. φP was reduced to 25 features as ranked by

the t-test, with a p-value cutoff of p = .05, using a leave one

out validation strategy. For CCA, φP and φJ were used as

the two multidimensional variables, X and Y , as mentioned

above in Sec II. For RCCA and SRCCA, φP and φJ were

used in a manner similar to CCA except they are tested

with regularization parameters λx and λy evenly spaced from

θ1 = .001 to θ2 = .2 with v = 200.

Experiment 1 - Obtaining a Fused Proteomic, Histologic

meta-classifier

After using the top d = 2 embedding components, the

classification accuracies of K-Nearest Neighbor (φKNN ),

with k = 1, and Random Forrest (φRF ), with 50 Trees, were

determined using leave-one-out cross-validation.

Experiment 2 - Comparing classifier accuracy for SRCCA,

CCA, and RCCA based metaspace representations

Using these 10 different values for d ∈ {1, 2, ..10}, and

the 3 fusion schemes considered (φP , φM ), (φP , φA) and

(φP , φH ), 30 different embeddings were obtained for CCA,

RCCA and SRCCA. The maximum and median of these 30

different measurements for each classifier were calculated. In

addition, two paired Student t-tests were employed to iden-

tify whether there were statistically significant improvements

for the φKNN and φRF when: (1) CCA and SRCCA and (2)

RCCA and SRCCA.

Experiment 3 - Computational consideration for the 3

different CCA variants

We repeated Experiment 2 and measured the time for

RCCA and SRCCA to distinguish between the failures

and non-failures. These experiments were performed on a

quadcore computer with a clock speed of 1.8GHz.

E. Experimental results

Experiment 1: Across both classifiers, SRCCA had a me-

dian classification accuracy of 71% compared to 42% for

CCA and 42% for RCCA. SRCCA also performed better in

10 of 12 direct comparisons with CCA and RCCA, while

underperforming only once (fusing φP and φH with the

classifier KNN) (see Tables I and II). The higher classifica-

tion accuracy results indicate that SRCCA produces a better

metaspace compared to both CCA and RCCA.

These results, which strongly suggest that SRCCA out-

performs CCA and RCCA, are observable in the embedding

plots of Figure 2. More importantly, we see that because

CCA lacks regularization, the corresponding covariance ma-

trices have unreliable inverses. For this reason, in Figure 2

the embedding components are not orthogonal but are highly

correlated to each other and yield the same information.

RCCA overcomes this regularization problem but still does

not produce the same level of discrimination between patient

classes compared to SRCCA.
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Fig. 2. 2-dimensional representation of (φP , φA) using (a) CCA, (b) RCCA, and (c) SRCCA where the X and Y axes are the two most significant
embedding components produced by the 3 different algorithms. CCA (a) suffers from lack of regularization, RCCA (b) is regularized but does not produce
the best metaspace while SRCCA (c) results in the best embedding components in terms of classification accuracy distinguished via best fit ellipses with
one outlier.

TABLE I

AVERAGE K-NEAREST NEIGHBOR CLASSIFICATION ACCURACIES

Dataset (φI , φJ ) CCA RCCA SRCCA

(φP , φM ) 42% 37% 68%

(φP , φA) 37% 47% 74%

(φP , φH ) 74% 31% 68%

TABLE II

AVERAGE RANDOM FOREST CLASSIFICATION ACCURACIES

Dataset (φI , φJ ) CCA RCCA SRCCA

(φP , φM ) 42% 48% 70%

(φP , φA) 36% 30% 71%

(φP , φH ) 79% 46% 79%

Experiment 2: In Tables III and IV we see that the

maximum and median φKNN and φRF of SRCCA for fusion

of (φP , φJ ) were much higher than the corresponding values

of CCA or RCCA. We also see that SRCCA attains a

maximum classifier accuracy of 93.16% (see Table III). In

Table V, we see that SRCCA yielded a statistically significant

improvement over CCA and RCCA across both classifiers

even at the p = .01 level.

Experiment 3 Figure 3 reveals that SRCCA is much faster

and more efficient than RCCA. Even though the completion

times are visibly different, a p-value of 1.9×10−3 even with

just 3 samples, indicates that SRCCA is certainly statistically

significantly faster than RCCA.

TABLE III

MAXIMUM φKNN AND φRF OF DF SCHEMES ACROSS d ∈ {1, 2, ..10}

Classifier CCA RCCA SRCCA

φKNN 73.68% 68.42% 84.21%

φRF 80.20% 68.42% 93.16%

TABLE IV

MEDIAN φKNN AND φRF OF DF SCHEMES ACROSS d ∈ {1, 2, ..10}

Classifier CCA RCCA SRCCA

φKNN 57.89% 47.37% 68.42%

φRF 58.42% 37.37% 74.21%

IV. CONCLUDING REMARKS

In this paper, we presented a novel supervised varia-

tion of CCA, Supervised Regularized Canonical Correlation

Analysis (SRCCA). We applied this method to the prob-

lem of predicting 5 year biochemical failure in prostate

cancer patients who have undergone radical prostatectomy.

Overall, SRCCA allows for construction of a more accurate

metaspace representation of imaging and non-imaging data

compared to CCA and RCCA. Using the RF classifier, we

are able to achieve a meta-classifier with classification results

TABLE V

STATISTICAL SIGNIFICANCE (p-VALUE) OF SRCCA

Classifier SRCCA vs CCA SRCCA vs RCCA

φKNN
4.0× 10

−9
7.1× 10

−11

φRF 2.1× 10−7 3.6× 10−16
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Fig. 3. Experiment 3: Computational run times for SRCCA and RCCA for
the different fusion combinations. SRCCA significantly outperforms RCCA
across all fusion experiments.

as high as 93%. Moreover, SRCCA is computationally much

cheaper compared to RCCA. These results strongly indicate

that SRCCA is a powerful tool in multimodal DF.
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