
 

 

 

  

Abstract—We present a novel knowledge discovery 
methodology that relies on Rough Set Theory to predict the life 
expectancy of terminally ill patients in an effort to improve the 
hospice referral process. Life expectancy prognostication is 
particularly valuable for terminally ill patients since it enables 
them and their families to initiate end-of-life discussions and 
choose the most desired management strategy for the 
remainder of their lives. We utilize retrospective data from 
9105 patients to demonstrate the design and implementation 
details of a series of classifiers developed to identify potential 
hospice candidates. Preliminary results confirm the efficacy of 
the proposed methodology.  We envision our work as a part of 
a comprehensive decision support system designed to assist 
terminally ill patients in making end-of-life care decisions.  

I. INTRODUCTION 

COORDING to Medicare regulations, a patient should 
be referred to hospice if his/her life expectancy is less 

than 6 months [1]. However, despite the well-documented 
advantages of hospice services, terminally ill patients do not 
reap the maximum benefits of hospice care with the majority 
of them being referred to hospice either prematurely or too 
late. In general, premature hospice referral is translated to 
patients losing the opportunity to receive potentially 
effective treatment, which may have prolonged their lives. 
Conversely, late hospice referral reduces the quality of life 
for patients and their families. It is apparent that accurate 
prognostication of life expectancy is of vital importance for 
all parties involved in the hospice referral process (e.g. 
patients, their families, and their physicians). 
 Here, we propose a novel knowledge discovery 
methodology developed to identify terminally ill patients 
with life expectancy less than 6 months. The core of the 
proposed methodology is Rough Set Theory [2]. The rest of 
this paper describes implementation details, reports results, 
and discusses limitations and future directions of our work.  

II. METHODOLOGY 

A. Literature Review 
Approaches for developing prognostic models for 

estimating survival for seriously ill patients range from the 
use of traditional statistical and probabilistic techniques [3]-
[6], to models based on artificial intelligence techniques 
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such as neural networks, decision trees and rough set 
methods [7]-[11].  A recent systematic review of prognostic 
tools for estimating survival in palliative care highlighted the 
lack of accurate end-of-life prognostic models [13]. 

Both statistics based techniques and AI based models rely 
on data that are precisely well defined. However, medical 
information, which represents patients records that include 
symptoms and clinical signs, is not always well defined and, 
therefore, the data are represented with vagueness [14]. 
Particularly, for this kind of information, it becomes very 
difficult to classify borderline cases in which very small 
differences in the value of a variable of interest may 
completely change categorization and therefore the 
following decisions can changes dramatically [15]. 
Moreover, the dataset is presented with inconsistencies in 
the sense that it is possible to have more than one patient 
with the same description but showing different outcomes.  

In this work we propose the use of Rough Set Theory 
(RST) [2] to deal with vagueness and inconsistency in the 
representation of the dataset. RST provides a mathematical 
tool for representing and reasoning about vagueness and 
inconsistency. Its fundamentals are based on the 
construction of similarity relations between dataset objects 
from which approximate yet useful solutions are provided. 
In RST, the knowledge extracted from the data set is 
represented in the form of “if-then” decision rules where an 
explanation of how the final decision was derived can be 
traced. Clinical credibility in prognosis models depends on 
the ease with which practitioners and patients can 
understand and interpret the results [16]. Therefore, the if-
then decision rule representation offers a significant 
advantage over “black box” modeling approaches such as 
neural networks. 

RST has been used in a number of applications dealing 
with modeling medical prognosis [9]–[12]. For example, 
Tsumoto et al. [11], provides a framework to model medical 
diagnosis rules showing theoretically that the characteristics 
of medical reasoning reflect the concepts of approximation 
established in Rough Set Theory. Komorowski et al. [12], 
show that RST is useful to extract medical diagnosis rules to 
identify a group of patients for whom performing a test that 
is costly or invasive is redundant or superfluous in the 
prognosis of a particular medical condition. 

In this paper we describe a RST based knowledge 
discovery methodology to provide a classifier that properly 
discriminates patients into two groups, those who survive at 
least 180 days after evaluation for hospice referral and those 
who do not. ROSETTA [17] software is used to perform the 
analysis described in the remainder of the paper.  
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B. Dataset 
The dataset used in this study consists of the 9105 cases 

from the SUPPORT (Study to Understand Prognoses and 

Preferences for Outcomes and Risks of Treatments) 
prognostic model dataset [18]. We consider all variables 
used in the SUPPORT prognostic model [4] as condition 
attributes, i.e. the physiologic variables along with the 
diagnosis groups, age, number of days in the hospital before 
entering the study, presence of cancer, and neurologic 
function. Attributes’ names and descriptions are listed in 
Table I. 
 As the decision attribute, we define a binary variable 
(Yes/No) “deceases_in_6months” using the following two 
attributes from the SUPPORT dataset: 

• “death” which represents the event of death at any time 
up to NDI date (National Death Index date: Dec 31, 1994). 
• “D.time”: number of days of follow up 

The values of the decision attribute are calculated converting 
the “D.time” value in months and comparing against the 
attribute “death” as follows: 
• If “D.time” < 6 months and “death” is equal to 1 (the 

patient died within 6 months) then “deceases_in_6months” 
is equal to “Yes” 
• If “D.time” > 6 months and “death” is equal to 1 (the 

patient died after 6 months) then “deceases_in_6months” is 
equal to “No” 
• If “D.time” > 6 months and “death” is equal to 0 (the 

patient did not died after 6 months) then 
“deceases_in_6months” is equal to “No” 

C. Rough Set Theory 
Based on RST, we can formally define the prognostication 

problem as: 
 
𝑇 = (𝑈,𝐴 ∪ {𝑑})              (1) 
 

where T represents the dataset in the form of a table. Each 
row represents an object and each column represents an 
attribute. U is a non-empty finite set of objects and the set A 
represents a non-empty finite set of attributes called the 
condition attributes. In our case, an object designates a 
terminally ill patient and an attribute designates each of the 

fifteen condition attributes that describe a patient (Table I). 
Also, for every attribute a ∈ A, the function a: U→Va makes 
a correspondence between an object in U to an attribute 
value Va which is called the value set of a. 

The set T incorporates an additional attribute {d} called 
the decision attribute. The system represented by this 
scheme is called a decision system. 

D. Rough Set Theory Based Knowledge Discovery Process 
RST based knowledge discovery process requires 

sequential and parallel use of various mathematical, 
statistical and soft computing methodologies with the 
objective of identifying meaningful relationships between 
condition and decision attributes.  

The selection of specific methodologies for knowledge 
discovery is largely dependent on the considered dataset. We 
have taken the following steps in our approach:  

1) Data preprocessing: If the selected table contains 
“holes” in the form of missing values or empty cell entries; 
the table may be processed in various ways to yield a 
completed table in which all entries are present. The data 
completion process for SUPPORT dataset in [18] is adopted 
in this work. After the preprocessing phase, the number of 
patients with missing information is reduced by 2 cases. 
Therefore, there are 9103 complete cases. 

The next step in preprocessing is the discretization 
process. 13 out of 15 of the conditional attributes are 
continuous; therefore we transformed them into categorical 
variables. The discretization process is based on the 
searching of cuts that determine intervals. This process 
enables the classifier in obtaining a higher quality of 
classification rules. We found that using cut-off defined by 
medical experts is the best alternative for the discretization 
process. We consider the APACHE III Scoring System [5] 
for determining the cut-off for the physiologic variables 
along with the age variable. The remaining variables, not 
defined in [5] are discretized using Boolean Reasoning 
Algorithm [19] implemented in the ROSETTA software. 

Finally, the dataset is divided randomly into training and 
testing sets containing 500 and 8603 cases, respectively. The 
training set is used in the discretization process to obtain the 
cut-off for the numerical attributes. 

2) Reduct Generation: This step reduces the 
dimensionality of the dataset with the intention of removing 
redundant information and consequently decreases the 
complexity of the mining process. A reduct is the minimal 
set of attributes that enable the same classification as the 
complete set of attributes without loss of information. There 
are many algorithms for computing reducts for which the 
effect to the classification performance is critical. Since the 
computational complexity of the reduct generation problem 
is NP-hard [19], various suboptimal techniques have been 
proposed. In this work the dynamic reduct approach ([20-
21]) is used for reduct generation.  

2.1) Dynamic Reducts 
Dynamic reducts algorithm aims at obtaining the most 

TABLE I 
CONDITION ATTRIBUTES 

Name Description 
meanbp Mean arterial blood pressure Day 3 
wblc White blood cell count Day 3 
hrt Heart rate Day 3 
resp Respiratory rate Day 3 

temp Temperature (Celsius) 
alb Serum Albumin 
bili Bilirubin 
crea Serum Creatinine 
sod Sodium 
pafi Pa02 / (.01 * FiO2) 
ca Presence of cancer 
age Patient’s age 
hday Days in hospital at study admit 
dzgroup Diagnosis group 
scoma SUPPORT coma score based on Glasgow coma 

scale 
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stable sets of reducts for a given dataset by sampling within 
this dataset. Random samples of the testing set are selected 
iteratively and reducts for the samples are computed using 
genetic algorithms [22-23]. The reducts that most frequently 
appear in the samples are the most stable. 

Based on the principle of the dynamic reducts technique, 
we have randomly selected 100 subdivisions of the training 
set to use for reduct generation. The actual number of patient 
profiles included in each subdivision of the training set 
varies between 50% and 90% of the training dataset. Using 
this approach, 229 reducts were obtained from which the set 
of decision rules are generated. 

2.2) Using the decision attribute as condition attribute 
Typically only the condition attributes are used to 

generate reducts. As an alternative, we included the decision 
attribute d in the set of condition attributes and calculated 
the reducts based on this scheme.  

 The decision attribute (deceases_in_6_months) used as a 
condition attribute is intended to represent the physician’s 
estimate of life expectancy expressed in terms of the 
decision classes defined for this problem. Survival prognosis 
models that incorporate physician estimates are shown to 
improve both predictive accuracy and the ability to identify 
patients with high probabilities of survival or death [4]. In 
this case, 549 reducts were obtained. The next step is the 
induction of decision rules. 

3) Rule Induction. The ultimate goal of the RST based 
knowledge discovery methodology is to generate decision 
rules, which will be used in classifying each patient as 
surviving or not surviving within the defined period of time. 
A decision rule has the form: if A then B (A → B),  where A 
is called the condition and B the decision of the rule. 
Decision rules can be thought of as a formal language for 
drawing conclusions from data.  

The decision rules were generated based on the two 
aforementioned sets of reducts. After the process of reducts 
generation, the decision table is presented in a compact 
shape from which the decision rules are generated 

4) Classification. Based on the set of rules generated, we 
can classify patients as surviving or not surviving the six-
month period. However, not all rules are conclusive. Patients 
with profiles identical to the conditions of the rules are not 
decisively classified. In addition, there are situations of 
contradictory rules, e.g. one or more rules classify a patient 
as surviving and some other rules classify the same patient 
as dying. To overcome these problems a standard voting 
algorithm [19] is used which allows all rules to participate in 
the decision process and classify a patient based on majority 
voting. 

III. RESULTS 
This section compares the performance of the 

classification processes where, the patients in the training 
dataset are classified as survive, not survive or undefined 
based on the induced rules and the classification process 

 

 described. The results are presented in a confusion matrix 
form.  

The accuracy of each classification model is reported in 
terms of Area under the Receiver Operating Characteristic 
curve (AUC). The best possible classification is achieved 
when AUC is equal to 1, while no classification ability exists 
when AUC is equal to 0.5.  

Table 2 presents the confusion matrix for the 
classification model based on reducts generated on only the 
original condition attributes (without including the decision 
attribute). Table 3 shows the confusion matrix for the 
alternative case where the decision attribute is included in 
the set of condition attributes. 

The dynamic reducts approach without using the decision 
attribute as a condition attribute shows a weak 
discrimination ability. However, it demonstrates a fairly high 
level of coverage, being able to classify around 85% of the 
test cases. As shown in Table 3, the classification 
performance in terms of AUC when using the decision 
attribute as a part of the condition attributes is approximately 
0.90. Both the specificity and sensitivity scores are 
tremendously improved. However, the classification 
coverage in this case is reduced to 70%. 

The described classification process was repeated 10 
times using randomly selected samples from the dataset 
(again 500 cases for training and the remainder 8603 cases 
for testing). The overall classification performance is 
obtaining by averaging the AUC from each iteration.  Using 
the original set of attributes, the overall AUC is 0.56 (SD = 
0.01). Following the same, we obtained an AUC of 0.85 (SD 
= 0.065) for the case where the decision attribute is used as a 
condition attribute.  

 

TABLE 2 
CONFUSION MATRIX. THE REDUCTS ARE BASED ON SET 𝐴. THE CLASSIFIER 

PRESENTS AUC EQUAL TO 0.55 INDICATING WEAK DISCRIMINATION 
ABILITY. 

Predicted 

Ac
tu

al
 

 Not 
survive 

Survive Undefined 

Not 
survive 

1395 1953 677 

Survive 1410 2542 626 

Sensitivity = 0.64 
Specificity = 0.42 

AUC = 0.55 
 

TABLE 3 
CONFUSION MATRIX. THE REDUCTS ARE BASED ON SET 𝐴 =  𝐴 ∪  {𝑑}. THE 

CLASSIFIER PRESENTS AUC EQUAL TO 0.90 INDICATING GOOD 
DISCRIMINATION ABILITY. 

Predicted 

Ac
tu

al
 

 Not 
survive 

Survive Undefined 

Not 
survive 

1999 471 1555 

Survive 312 3245 1021 

Sensitivity = 0.91 
Specificity = 0.81 

AUC = 0.90 
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IV. CONCLUSIONS AND FUTURE WORK 
The SUPPORT model is the “gold standard” model for 

prognostication of terminally ill patients. The AUC for 
prediction of survival for 180 days in the SUPPORT study is 
0.79, and 0.82 when SUPPORT model is combined with 
physician’s estimates [4]. 

This initial exercise in applying knowledge discovery 
methodologies based on rough set theory shows promise in 
developing a reliable methodology to predict life 
expectancy. The baseline model using dynamic reducts 
presents several opprotunities for improvement: 
1. Due to the limitations of the ROSETTA software, the 

size of the training set was limited to 500. The size of 
the training set may be a limiting factor to obtaining 
better classification accuracy and coverage considering 
the high number of categories associated with each 
attribute.   

2. One area that needs to be explored is the appropriate 
weighting of the condition attributes in terms of their 
impact on the decision variable. The baseline case 
assumes that all physiological attributes are weighed 
equally. We believe that a careful weighting of the 
attributes by consulting an expert will greatly improve 
the classification accuracy of the approach. 

 Including the physician’s estimate in the prognostication 
process is an important component of our future work. The 
classifier which uses the decision attribute as a condition 
attribute is intended to incorporate the professional opinion 
of the physician. This classifier performed much better than 
the baseline model and its accuracy exceeded that of the 
SUPPORT model. However we note that, in this approach 
only 70% of the test cases could be classified and more 
research is required to minimize the number of undefined 
cases. Furthermore, our model used the decision attribute 
from a retrospective study for which the decision was known 
with 100% accuracy. Ideally this approach should be tested 
on a prospective dataset and its performance compared to 
other soft models based on AI techniques which are a part of 
our future work.  
 Finally, it is important to remember that regardless of the 
accuracy of any classifier, medical decisions must take into 
account the individual patient preferences towards 
alternative forms of treatments[24]. Therefore, our intent is 
to incorporate our methodology into a patient-centric 
decision support system to facilitate the hospice referral 
process. 
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