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Abstract— Arterial wave speed estimated invasively from
pressure (P ) and velocity (U ) measurements using the P-U
loop method, or non-invasively from diameter (D) and U
measurements using the lnD-U loop method, assume that during
early systole 1) backward-running waves are absent and 2)
wave speed is constant. These assumptions also form the basis
of a method for correcting time lags between P (or lnD)
and U in which the R2 of the early-systolic linear regression
is maximized. However, neither of the two assumptions are
strictly valid in vivo, where the diastolic pressure decay from the
previous beat may give rise to some non-zero backward-running
P , U and wave intensity (WI) components, and the pressure-
dependency of wave speed may lead to curvilinearity in the
early-systolic P-U and lnD-U relations. Accordingly, this study
assessed the robustness of three phase correction algorithms,
(including two that are not dependent on the two assumptions
stated above, i.e., aligning the times of the peak 2nd derivative
or peak signal curvature) and of the P-U and lnD-U loop wave
speed estimation methods under a range of diastolic decay
rates and degrees of vessel wall non-linearity. Results from a
simple computer model of the arterial circulation suggested that
although an apparent phase lag may be introduced by assuming
linearity, the magnitude of this phase lag is likely to be small
considering the sample intervals normally used in experimental
studies; however, under highly non-linear flow conditions, the
apparent lag may be comparable to hardware-related lags.
Predicted errors in estimated wave speed using the P-U loop
method were generally less than 10%, while somewhat higher
errors were found in the lnD-U loop method (up to 15-20%). In
both, higher diastolic pressure decay rates were associated with
higher wave speed errors, although this effect was eliminated
by subtracting the extrapolated diastolic pressure curve from
the measured pressure. Overall, each of the time lag correction
algorithms and wave speed estimation methods were generally
satisfactory, although further experimental work is required
to assess the curvature-based phase correction method and
pressure adjustment in vivo.

I. INTRODUCTION

Accurate estimation of wave speed from experimental data
is crucial for gaining information about vessel properties
and for the analysis of pressure (P ), velocity (U ) and
wave intensity (WI) [1]–[3]. The most commonly-employed
technique for estimating wave speed in invasive studies is
the P-U loop method [1], while a similar method proposed
recently for non-invasive studies is the lnD-U loop method
that employs measurements of diameter (D) and U [2].
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Before applying these methods, hardware-related time lags
between U and P or D need to be corrected [1], [4], which
in previous studies has been achieved by shifting the velocity
signal to align the peak second derivatives of P and U [3],
[5] or to achieve the most linear relationship (i.e. highest R2)
between P (or D) and U during early systole [1], [6].

However, the wave speed estimation methods and the
phase correction algorithm based on maximizing R2 assume
that 1) backward-running waves are minimally present during
early systole and 2) wave speed is constant throughout
the cardiac cycle, neither of which are strictly valid in
vivo. Regarding the first assumption, the diastolic decline
of arterial pressure is not completed by the start of the
next beat, suggesting that backward-running waves may not
be completely absent during early systole [7]. Moreover,
since wave speed is actually pressure-dependent and varies
during the cardiac cycle [8], the early-systolic P-U or lnD-U
relations may, in fact, be curvilinear and not linear.

Although early-systolic backward waves and the pressure-
dependency of wave speed are generally considered to exert
negligible effects, it is unclear to what extent these phenom-
ena introduce error into the P-U or lnD-U loop wave speed
estimation methods, or produce apparent time lags between
P (or D) and U . This study investigates these issues using
a simple computer model of the arterial circulation in which
wave speed is known a priori and no phase lag is present.
Three time lag correction algorithms are assessed, 1) the
maximal R2 regression method [1], [6], 2) the peak second-
derivative alignment method [3], [5] and 3) a new method
proposed here in which the onset of P and U signals, as
assessed by peak curvature [9], [10], are aligned; note that
unlike the first of these three methods, the last two do not
depend on an assumption of linearity. The accuracy of the
obtained time lags and P-U or lnD-U loop-estimated wave
speeds are assessed under a wide range of diastolic decay
rates and flow conditions that range from linear to highly
non-linear.

II. METHODS

The model of the systemic arterial circulation consists
of a single one-dimensional (1D) segment, representing the
wave propagation phenomena in the large arteries, and a
3-element windkessel (0D) compartment representing the
peripheral vasculature (Figure 1). The equations governing
instantaneous pressure (P ), velocity (U ) and cross-sectional
area (A) are given by

∂A

∂t
+
∂AU

∂x
= 0 (1)
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Fig. 1. Schematic of the single segment computer model, where unless
otherwise stated, l = 7 cm, A0 = 6 cm2, c0 = 4 m/s, P0 = 80 mmHg,
b = 2.8, Z0 = ρc0/A0 = 0.053 mmHg.s/mL, C = 1.0 mL/mmHg,
R = 1.0 mL/mmHg, P∞ = 35 mmHg. Parameters chosen to produce
normal aortic pressure, velocity and wave intensity signals [1], [5].
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where µ is blood viscosity and ρ is blood density (0.035
poise and 1.06 g/cm3 respectively). A non-linear pressure-
area relation (or ‘wall law’) is given by

P − Pext =
2ρc20
b

[(
A

A0

)b/2

− 1

]
+ P0 (3)

where Pext is external pressure (assumed to be zero) and
the reference cross-sectional area (A0), wave speed (c0) and
pressure (P0) are assumed to be uniform along the entire
length (l) of the 1D segment. The wall law power (b) governs
the non-linearity of the pressure-area relation and thus the
degree to which wave speed depends on pressure, as seen
via the following expression for instantaneous wave speed,

c =

√
b

2ρ
(P − P0) + c20 (4)

At the inlet to the 1D segment, a ‘forward pressure’ ventri-
cle/valve model is employed and has been described previ-
ously along with the numerical techniques used for solving
the 1D governing equations and for coupling 1D and 0D
domains [11], [12]. The 3-element windkessel consists of
a characteristic impedance (Z0), compliance (C), peripheral
resistance (R) and outlet pressure (P∞). Note that the time
constant (τ ) of the diastolic pressure decay is approximately
equal to R(C +C1D), where C1D = A0l/(ρc

2
0) is the com-

pliance of the 1D segment, and is thus varied by changing
C. Parameter values are given in the caption of Figure 1.

The theory of wave intensity analysis has been de-
scribed elsewhere [13], [14]. Briefly, time-corrected WI
is defined as (dP/dt)(dU/dt) and may be separated
into forward and backward-running components, WI± =
(dP±/dt)(dU±/dt), where the pressure and velocity com-
ponents are given by

P± =
1

2
(P ± ρc̄U) + P 0

± (5)

U± =
1

2

(
U ± 1

ρc̄
P

)
+ U0

± (6)

where, for graphing purposes, the arbitrary initial values
are assumed to be P 0

± = Ped and U0
± = 0, with Ped

being end-diastolic pressure. Since linear wave separation is

performed, the cycle-averaged wave speed (c̄) is used and is
considered the true wave speed against which P-U or lnD-U
loop estimates are compared.

If wave travel is unidirectional, the water hammer equation
(dP± = ρcdU±) leads to the following expression for wave
speed (cPU ) using single-site measurements of P and U ,

cPU =
1

ρ

dP±
dU±

(7)

Thus if c is constant, the relationship between arterial P
and U during early systole is expected to be linear, with
a slope equal to ρc [1]. Similarly, the relation between
vessel distensibility (Ds) and wave speed (c2 = 1/(ρDs))
can be used to estimate wave speed (cDU ) from single-site
measurements of D and U as follows [2],

cDU = ±1

2

dU±
dlnD±

(8)

Again, the relation between ln(D) and U is expected to be
linear during early systole, with a slope of 1/(2c). Note
however, that a pressure-dependence of wave speed is likely
to cause some degree of curvilinearity in the early-systolic
P − U and lnD − U relations, even in the absence of any
backward-running waves or time lags. To eliminate the effect
of the diastolic pressure decay on early-systolic backward
waves, the diastolic pressure is fitted to a mono-exponential
curve, extrapolated into the next beat and subtracted from
the raw pressure to yield an adjusted pressure.

The new method for correcting time lags is motivated from
previous work [9], [10], which demonstrated that peaks in
signal curvature provide an accurate means of identifying the
early-systolic onset or ‘foot’ of a haemodynamic signal. The
curvature (κ) of a continuous signal (y) is defined as

κ(t) =
d2y
/
dt2[

1 + (dy/dt)
2
]3/2 (9)

A discrete version of this function for use with time signals,
derived in [10], is given by

k (ti) =
2

∆x2

∑2
m=−2 a

m
2 yi+m[

1 +
(

1
∆x

∑2
m=−2 a

m
1 yi+m

)2
]3/2

(10)

where amk refers to the mth coefficient and kth derivative
obtained from a fourth-order Savitzky-Golay filter. ∆x is a
constant that transforms the time axis into an axis that is
approximately orthogonal to the y axis; for full details see
[10].

III. RESULTS & DISCUSSION

Fig. 2 shows the simulated net P and U signals (black
lines) and the forward (red) and backward (blue) components
of P , U and WI . In Fig. 2A, it can be seen that the diastolic
decay in the previous beat persists into the next beat and
causes a small change in P− and U− and a non-zero value
of WI− during early systole (as indicated by the arrows).
Moreover, when wave speed is highly pressure-dependent
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Fig. 2. (A) Model-derived net pressure and velocity (P and U , black lines) and the forward (red) and backward (blue) components of pressure (P±),
velocity (U±) and wave intensity (WI±) for linear flow conditions (b = 0.1). The arrows show that P− and U− are changing during early systole, while
WI− is non-zero. (B) The P -U loop and (C) the lnD-U loop under non-linear flow conditions (b = 8.5). The black loops are from the model and display
some curvilinearity during early-systole (indicated by the grey dashed arrows). The red loops result from the velocity time lag correction algorithm in
which the lag is determined by the maximal R2 of the early-systolic regression.

(ranging from 2.9 at end-diastole to 5.7 at peak pressure,
b = 8.5), the early-systolic part of the P-U (Fig. 2B) and lnD-
U (Fig. 2C) loops display some curvilinearity (black loops),
whereas shifting the velocity signal in order to maximize the
R2 of the respective relationships during this time (red loops)
suggests the existence of a time lag between the raw signals
when none is present.

The magnitude of the apparent shift is shown in Fig. 3
for the three different phase correction algorithms and over
a range of arterial time constants (A) and degrees of vessels
wall non-linearity (B). Comparison of the correction algo-
rithms before (solid lines/filled symbols) and after (dashed
lines/open symbols) adjustment of the pressure to remove the
effect of the diastolic decay in the previous beat indicates
that although such adjustment alters the apparent time lag,
it has no clear benefit. Note that previous high-fidelity wave
intensity studies have used sampling rates of up to 1000 Hz
[3], [5] and therefore a shift of 1 ms represents at most
only one sample interval. The predicted apparent shifts in
Fig. 3A&B are thus generally quite small. However, with
increasingly non-linear conditions (higher b), the apparent
phase lag progressively increases for all of the correction
algorithms except the curvature-base method, approaching
the same magnitude as the hardware-related lags reported
for transit-time flow probes (3.5 ms) [15].

The corresponding errors in estimated wave speed using
the P-U loop method are given in Fig. 3C&D, while the
errors for the lnD-U loop method are shown in Fig. 3E&F.
In most cases, the P-U and lnD-U loop methods underesti-
mate and overestimate wave speed respectively. When the
raw pressure is used in the calculations (solid lines), the
error magnitude increases (up to 12%) with smaller time

constants (i.e. higher decay rates, Fig. 3C&E), whereas with
the adjusted pressure, the errors are smaller and no longer
dependent on the time constant. These findings support
the notion that a faster diastolic decay rate degrades the
accuracy of wave speed estimation techniques, although
the resultant errors are generally less than 10% even for
fast decay rates. With the P-U loop method, increasing the
degree of non-linearity (Fig. 3D) causes progressive changes
to the wave speed errors except when the curvature-based
phase correction algorithm is used. Use of the adjusted
pressure leads to absolute errors that are mainly less than
5%, although the raw pressure used in conjunction with the
maximal R2 lag correction algorithm also results in accurate
estimates of wave speed (despite inaccurate estimates of the
phase lag, Fig. 3B). Using the raw pressure, the lnD-U loop
method exhibits greater errors compared with the P-U loop
method, which increase progressively to between 15 and
20% at high degrees of non-linearity (Fig. 3E). These errors
are only partially ameliorated by the pressure adjustment,
while results derived in conjunction with the curvature-based
lag correction algorithm lead to appreciably lower errors.
Overall, comparison of panels D and F in Fig. 3 suggest that
non-linearities have a greater confounding influence on the
lnD-U loop method compared with the P-U loop method.

IV. CONCLUSIONS

Modelling results presented in this study indicate that a
pressure-dependence of wave speed may lead to apparent
shifts between P (or lnD) and U and that both vessel wall
non-linearity and rapid diastolic decay rates (or low arterial
time constants) may introduce error into arterial wave speed
estimates obtained from the P-U or lnD-U loop methods.

6448



Fig. 3. The velocity shift introduced by the time lag correction algorithms when (A) the arterial time constant (τ ) is varied, resulting in a wide range
of diastolic decay rates, and (B) the wall law power (b) is varied (higher values mean a greater pressure-dependence of wave speed). The algorithms
tested are the maximal R2 method using the P-U loop (blue squares) or lnD-U loop (black triangles), the 2nd-derivative alignment method (red circles)
and the peak curvature alignment method (green diamonds). These algorithms were applied using the raw pressure signal (solid lines/filled symbols) or
the adjusted pressure (i.e. after subtracting the extrapolated diastolic decay from the previous beat, dashed lines/open symbols). (C,D) The corresponding
errors in estimated wave speed when assessed via the P-U loop method (symbols as in panels A & B). (E,F) The errors in estimated wave speed when
assessed via the lnD-U loop method (symbols as in panels A&B). 5% error lines are shown with grey lines in panels C-F.

Although the maximal R2 and peak 2nd derivative alignment
methods appear to be reliable under most circumstances,
they may become less accurate under highly non-linear flow
conditions. By contrast, a new phase correction method
proposed here, in which the peaks in signal curvature are
aligned, appears to be insensitive to the degree of non-
linearity. Although wave speed estimates obtained from the
P-U and lnD-U loop methods appear to be accurate to within
∼ 10% under most circumstances, their accuracy may be
improved (particularly for lower arterial time constants) by
a pressure adjustment in which the extrapolated diastolic
pressure decay from the previous beat is subtracted from
the measured signal. Further work is required to evaluate
the curvature-based phase correction method and pressure
adjustment procedure in vivo.
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