
  

Abstract— A multidimensional signal processing method is 

described for detection of bleeding stroke based on microwave 

measurements from an antenna array placed around the head 

of the patient. The method is data driven and the algorithm 

uses samples from a healthy control group to calculate the 

feature used for classification. The feature is derived using a 

tensor approach and the higher order singular value 

decomposition is a key component. A leave-one-out validation 

method is used to evaluate the properties of the method using 

clinical data. 
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I. INTRODUCTION 

lectromagnetic waves at microwave frequencies can 

interact with the human body both through reflection at 

the interface between the body and the surrounding 

media but also penetrate and interact with internal  body 

tissues. The propagation of electromagnetic waves is 

determined by geometry and dielectric properties of the 

various body tissues. Hence, changes to the dielectric 

properties inside the body could thus be detected by a 

change in the electromagnetic properties around the body. 

Blood has a different dielectric properties compared to brain 

tissue and hence accumulation of blood in the brain would 

lead to a change in the electromagnetic properties. By 

employing a microwave antenna array placed around the 

head of a patient, electromagnetic measurements in the form 

of the scattering matrix at several frequencies would thus 

convey information regarding the electrical properties of 

the antenna system which includes the electromagnetic  

properties also inside the brain. Microwave measurement 

systems thus have the potential ability to be used for non- 

 
 

 

invasive medical monitoring and diagnosis for selected 

purposes. Prototype systems exists for imaging breast cancer  

using a microwave tomography approach [1] and for 

monitoring and detection of bleedings in stroke patients [2, 

3]. Microwave array measurements are inferior in 

comparison with Computed Tomography (CT) or Magnetic 

Resonance Imaging (MRI) regarding resolution. However, 

the microwave technique has no hazardous radiation and in 

some diagnostic cases, such as cancer, it has better contrast 

[4]. Furthermore a microwave measurement system is 

expected to be both inexpensive and lightweight thereby 

enabling portable units for use for example in an ambulance. 

Stroke has in principle two origins. Either a blood vessel 

has ruptured in the brain and a blood pool is formed leading 

to the stroke symptoms or a cerebral vessel has become 

occluded by a clot locally restricting the blood flow to the 

brain and ultimately leading to necrosis. The first case is 

referred to as an intra cerebral hemorrhagic stroke (ICH) 

while the second situation is known as an ischemic stroke 

(IS). If an ischemic stroke is diagnosed within 3 hours from 

onset of symptoms thrombolytic therapy can be initiated 

with the aim to dissolve the clot and restore the circulation 

[5]. Today the diagnosis is made by CT or MRI. However, 

since in most clinics CT and MRI are heavily utilized, in 

many IS cases the diagnosis is made to late to enable 

usage of thrombolysis and hence leading to a worse outcome 

[6,7]. This paper is focused on the application of detecting 

bleedings within the brain cavity from microwave 

measurements.  

A technique based on multidimensional signal processing 

techniques and Higher Order Singular Value Decomposition 

(HOSVD) is developed to derive suitable features from the 

microwave scattering dataset and investigate the power of a 

classifier based on the derived features. 

A clinical trial has been performed by Medfield 

Diagnostics AB in collaboration with Sahlgrenska 

University Hospital, Sweden and the data are used to 

evaluate the developed technique. 
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II. CLASSIFICATION ALGORITHM 

A. Measurement Data 

The microwave measurement device consists of 10 

transmitting and receiving antennas and the measurement for 

each pairs of antennas is done by sweeping the frequency 

range from 100 MHz to 3 GHz yielding on estimate of the 

array system microwave scattering data. The data is 

organized in a 3 dimensional complex-valued tensor in 

which the 1
st
 and 2

nd
 dimensions correspond to transmitting 

and receiving antenna index and 3
rd

 dimension corresponds 

to microwave measurement frequency. Therefore, it is 

natural to utilize methods which consider all the interactions 

between different components in the 3D data structure and 

construct a classifier based on multidimensional signal 

processing techniques. In the previous classifiers, used on 

microwave scattering data, this structure has been 

disregarded[3]. 

The measured microwave signals are the S-parameters of 

the microwave transmission and are in general complex 

numbers. 

The reflection and transmission coefficients are collected 

using 2 antennas in each time slot. The incident wave in the 

illumination area of the head splits into two main parts after 

arriving the head. The major part of the wave is reflected by 

the body surface. The remaining, rather small, part of the 

signal penetrates inside the brain and scatters. The receiving 

antennas on both sides will receive the signals which are the 

sum of all scattered and reflected signals on the transmitting 

side and only scattered signal on the receiving side. 

Generally all the transmission coefficients look almost the 

same but they are totally different from the reflection 

coefficients. Due to their higher amplitude and less 

information we have disregarded reflective coefficients and 

just considered transmission coefficients. 

B. Methodology 

The basic idea behind using HOSVD for classification of 

microwave scattering data is to use the knowledge about 

how the data is organized in order to extract powerful 

features and check whether this structural information of the 

data would lead to better performance in the classifier. First 

we investigate how the microwave data is structured.  

Since the measurement device is able to collect just one 

reflection and one transmission coefficient at each time slot, 

the measurement should be done with fixed sending and 

receiving antenna (one channel) for all the frequency range 

and then by fixing the sending antenna and switching to the 

next receiving antenna. Therefore, if we ignore the switching 

time between two consecutive measurements, we can model 

our measurement setup to a multichannel setup with single 

input and multiple output structure (SIMO). This idea will 

lead us to use multichannel setup to restructure the data into 

its actual 2D format in which each measurement is a 2D 

matrix with different channels in the first dimension and 

different wave frequencies in the second dimension. 

C. Orthogonal  base construction using HOSVD 

In order to define the HOSVD first we define the n-mode 

product of a tensor and a matrix. 

Definition  C-1 (n-mode product of a tensor and a matrix) 

The n-mode product of a tensor A∈ℂ��×��×…×�� by a matrix 	 ∈ ℂ
�×�� denoted by A ×� 	 is an  

(I1× I2×...× In-1×Jn×In+1×...×IN) tensor of which the entries 

are given by (A ×� 	)����…����������…��= � �����…����������…����
����� (1) 

The N
th

 order SVD or Higher order SVD is the 

generalization of tucker3 decomposition [8,9]. 

Every complex (I1× I2×... IN) tensor can be written as the 

product  

A = S ×� 	(�) ×� 	(�) … ×� 	(�)
= ���� ���� … ���� �����…�����(�) ∘ ���(�) ∘ … ∘ ���(�)��

����
��

����
��

����  
(2) 

In which, 	(�) =  ���(�)��(�) … � !(�)"   is a unitary (In × In) matrix, 

 �� ∘ �� indicates the outer product of two vectors �� and ��,  

S is a complex (I1× I2×... IN) tensor of which the 

subtensors S���# obtained by fixing the n
th 

index to α, have 

the properties of: 

all-orthogonality: two subtensors S���#  and S���$ are 

orthogonal for all possible values of n, α and % subject to & ≠ %, 

ordering: (S����( ≥ (S����( ≥ ⋯ ≥ (S�����( ≥ 0 (3) 

for all possible values of n [10,11,12]. 
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Figure 1: Visualization of Higher order SVD for a 

third-order tensor 

By comparing the matrix SVD and HOSVD, it is obvious 

that in the higher order case the core matrix S is replaced by 

the core tensor S. Instead of being pseudo-diagonal which 

means that non zero elements could only occur when the 

indices i1 = i2 = … = iN . Tensor S is in general a full tensor, 

but it obeys the weaker condition of all-orthogonality 

instead. The elements of S are not necessarily positive in 

general and they can be complex when A is a complex 
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valued tensor. The entries of S show the interaction between 

different elements of A as depicted in Figure 1 [10,12,13]. 

An important property of HOSVD is that the matrices 	(�) are orthogonal. Therefore, by using HOSVD 

decomposition it is possible to write each n
th

 order tensor 

A ∈  ℂ0-×0.×0/ as sum of n
th

 order rank-1 tensors as 

illustrated in Figure 2. 

The description of a tensor as the sum of rank-1 tensors 

can be formulated as 

A = ���� 12 ×3 �2(3) 4
2��  (4) 

in which 12 = (S ×� 5(�) ×� 5(�))∷2  for i =1 to I3 

are orthogonal bases with respect to 3
rd

 mode   and 5(3) = 89-(/) 9.(/) … 90/(/): (5) 

Using this property of HOSVD, it is possible to construct a 

subspace based on the training data. In the case of a 3D 

tensor the bases will be 2D matrices[12]. 

 
Figure 2: Tensor as a sum of rank-1 tensor 

D. Feature extraction using HOSVD 

In this section, we describe the feature extraction algorithm 

used in the HOSVD classifier. As a normal classification 

problem, there is a need to define a labeled data set as 

training data for classification. Training data in this project 

are based on measurements from a healthy control group. 

First, we stack several training sample matrices together and 

form a 3D tensor H∈ℂ��×��×�4  in which ;� is different 

channels, ;� is frequency range and ;3 is different 

measurements. In the next step, the mean of all healthy 

samples is calculated (<= ).  

<= = 1;3 � <∷�
�4

���  (6) 

Then the mean value is subtracted from each training 

sample in order to calculate deviations from mean (H?). 

These data will have the same structure as the original data. 

As it was discussed in section C, using HOSVD, we can 

construct orthonormal bases (1@) from training samples 

(H?). Afterwards, for each new measurement (A), the 

deviation from mean will be calculated as: A? = A − <=  (7) 

Having 1@ , <=  and  A? ready we can start to extract 

features. Figure 3 depicts the whole feature extraction 

algorithm. 

In fact, feature extraction unit considers matrices <=  and A? 

and a set of orthonormal matrices 1@ as the bases for a 

subspace (here we call it deviation space) and extracts 

features of <=  and A? which characterize their relations with 

deviation space. In general, in order to classify different 

matrices in an n-dimensional space, there are n different 

components which can be used for classification. Our 

assumption was that information correlated to ICH or IS 

would change the direction or the norm of the data with 

respect to deviation space. In order to have better detection 

of this change, we have  extracted a feature which we call it 

“HOSVD angle” and observe that it can lead to a total 

separation between healthy and ICH patients. 

Before getting to this feature consider these definitions:  

Definition  D-1 (Inner product of matrices) 

The inner product of two matrices A ∈ ℂC×� and D ∈ ℂC×� 

is defined as: 

〈A, D〉 = � � H��I��∗
�

���
C

���  (8) 

Definition  D-2 (Frobenius norm of a matrix) 

For a matrix A ∈ ℂC×� , the Frobenius norm is defined as: 

‖A‖ = L� � M@NM@N∗O
N�-

P
@�-  (9) 

Definition  D-3 (Projection of a matrix on a subspace) 

The projection of a matrix A ∈ ℂC×� on a subspace A 

represented by orthogonal bases 1@ ∈ ℂP×O is defined as: 

QA(A) = �〈1@, A〉. 1@
S

@�-  (10) 

In which 〈1@, A〉 is the scalar product 1@ and A and T =T�UV(A). 

Definition  D-4 (Angle between a matrix and a subspace) 

The angle between a matrix A ∈ ℂC×� and a subspace A is 

defined as: 

θX,A = cos\� ] 〈QA(A), A〉‖QA(A)‖. ‖A‖^ (11) 

HOSVD angle has been defined as the difference of the 

angle between new measurement and healthy deviation 

subspace and the angle between healthy average and healthy 

deviation subspace. 

_`abcd = _<=,H? − _A?,H?  (12) 

In which _A?,H?  is corresponding to the angle between 

new measurement and healthy deviation subspace. 

Therefore, we have _A?,H? = _<?,H? for new healthy 

measurement and _A?,H? = _e?,H? for new ICH 

measurement.  
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In the feature extraction step both A? and <=  belong to a 

high dimentional space and considering their relation is 

rather complicated. 

Figure 3: Feature extraction algorithm 

E. Leave-one-out approach 

Leave-one-out approach is one of the cross validation 

methods to validate the result of the classifier [14]. In our 

case we have 25 healthy subjects, 10 ICH patients and 12 IS 

patients. Leave- one-out approach is done in following steps: 

1. Building training samples from all but the first 

healthy sample. 

2. Constructing orthogonal bases from training 

samples. 

3. Classifying all patients (22) and the left out healthy 

sample. 

4. Repeating steps 1 to 3 for the next healthy samples  

F. Data preprocessing using HOSVD 

As it discussed earlier, according to (2) for a given tensor 

A, we can find an exact HOSVD of rank-(R1, R2,.. RN) 

where f� = T�UV�(A). If we disregard parts of the core 

tensor and corresponding columns in the factor matrices 	(�)  and reconstruct the tensor, the rank of reconstructed 

tensor i.e. rank-(R1, R2,.. RN) will be less than the rank of the 

original tensor f� < T�UV�(A). In this case the 

reconstructed tensor will be an approximation of A  by 

truncated HOSVD, which is the main idea of compressing 

the data using HOSVD. For each tensor A∈ℂ��×��×…×��, we 

can approximate the tensor as the sum of rank-1 components 

as follows: 

Ah = � � … � �����…�����(�) ∘ ���(�) ∘ … ∘ ���(�)i�
����

i�
����

i�
����  (13) 

Where j� are the number of components (orthogonal vectors 

in each factor matrices) and j� ≤ ;�. Therefore, the 

approximation Ah  of a tensor A can be thought of as the 

compressed version of A [11]. (see Figure 4 for an 

illustration)  

The ordering constraint of the tensor S imposes that the 

Frobenius-norm of the horizontal (frontal and respectively 

vertical) matrices does not increase as the index l� (l� and 

respectively l3) is increased [10,13]. Therefore, it is possible 

to consider that the strongest components of the data will be 

constructed by mostly the first ordered values in the core 

tensor S. This is the basic idea behind using truncated 

HOSVD for data preprocessing [10]. In this case, 

considering different measurements for one patient, it is 

possible to form the data in a 4D tensor structure and 

compress the data using truncated HOSVD with respect to 

the 4
th

 mode.  

Figure 4: Truncated HOSVD of a 3rd mode tensor 

III. EXPERIMENTAL RESULTS FOR CLINICAL DATA 

A clinical study has been done at Sahlgrenska University 

Hospital, Sweden, and the data has been collected for 

different patients with IS and ICH. The same type of 

measurements have also been collected on healthy 

volunteers to form the training set. The data consists of 20 

measurements for 10 ICH patients (2 measurements for each 

patient in two consecutive days), 24 measurements for 12 IS 

patients and 25 measurements for 25 healthy volunteers.  

A. Separation of ICH from Healthy 

In order to classify ICH patients, the classifier has been 

trained by healthy subjects i.e. to determine the bases 1@ for 

the deviation space H?. The results have been plotted in 

different box plots for each measurement (Figure 5). The 

deviation in each boxplot is due to changing the training set 

according to the leave-one-out approach as discussed in 

section  II.E. Results for all healthy subjects have been 

gathered in one group to be able to visualize the total 

variation for healthy measurements and compare with the 

other groups. 

HOSVD angle can lead to total separation of ICH from 

Healthy subjects for the data at hand. It is also observed that 

the threshold value can be easily set to 0 and negative angles 

will show the ICH patients while positive angles will show 

the healthy samples. As it is illustrated in Figure 5. 

B. Separation of IS from ICH 

The most important application of this classifier is to 

classify ICH from IS patients. In this section the HOSVD 

based classifier and the preprocessing method based on 

truncated HOSVD was used. For each patient all the 6 

consecutive measurements have been considered as a 4D 

tensor and by setting the compression factor to 5 (i.e. the  

1@ 

A 

A? 

H? 

H <=  
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Figure 5: Distribution of HOSVD angle for ICH patients 

first 5 slices of the core tensor is used for data 

reconstruction) the compression was done in frequency (3
rd

) 

direction. Then the dataset is reconstructed back as a 4D 

tensor and the measurements are separated respectively. The 

same procedure has been done for healthy measurements 

and the training set is also reconstructed with compression 

factor 5. The reconstructed data is feed into the same 

algorithm as depicted in Figure 3. In this section the factor 

of onset of the stroke which is the time slot between the first 

symptoms of stroke and measurement has been also 

considered. 

The results show that IS subjects have larger HOSVD 

angle values compared to ICH as depicted in Figure 6. It can 

also be concluded that the earlier the measurement is taken 

the better the classification results are. 

 

Figure 6: Classification results for separation of IS and 

ICH vs. onset time of stroke; the classification results show 

better performance for earlier measurements. 

IV. CONCLUSION 

In this paper a multidimensional signal processing method 

based on HOSVD was presented for the discrimination of 

ICH from IS patients. The basic idea of this method is to  

consider the actual structure of the data in microwave 

measurements and construct the classifier based on the 

orthogonal bases which can be obtained using HOSVD. 

The performance of the classifier has been analyzed using 

the leave-one-out validation approach. The data from 

clinical trial are examined using the constructed classifier 

showing a performance of 100% sensitivity and specificity 

for classification of ICH patient patients from Healthy 

subjects. The implementation of HOSVD for preprocessing 

the data has a great impact on the classification of IS from 

ICH and the correlation between the feature values and the 

onset of stroke. 
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