
  

 

Abstract—Alzheimer’s Disease (AD) is the most common 

neurodegenerative disease in elderly people. There is a need for 

objective means to detect AD early to allow targeted 

interventions and to monitor response to treatment. To help 

clinicians in these tasks, we propose the creation of the 

Bioprofile of AD. A Bioprofile should reveal key patterns of a 

disease in the subject’s biodata. We applied k-means clustering 

to data features taken from the ADNI database to divide the 

subjects into pathologic and non-pathologic groups in five 

clinical scenarios. The preliminary results confirm previous 

findings and show that there is an important AD pattern in the 

biodata of controls, AD, and Mild Cognitive Impairment (MCI) 

patients. Furthermore, the Bioprofile could help in the early 

detection of AD at the MCI stage since it divided the MCI 

subjects into groups with different rates of conversion to AD. 

I. INTRODUCTION 

LZHEIMER‟S DISEASE (AD) is the most common 

neurodegenerative disease among elderly people [1]. In 

2006, there were 26.6 million AD patients worldwide and its 

prevalence is expected to grow fourfold by 2050 due to the 

aging population [1]. The progression of AD starts several 

years before the first symptoms appear and it remains 

undetected in that time [2], [3]. Mild Cognitive Impairment 

(MCI) is often considered a transitional stage between 

normal aging and dementia [2], [4]. However, this condition 

is heterogeneous. Whereas some MCI patients develop AD 

or other dementias, others remain as MCI patients for many 

years [2], [4]. There is a need for objective means to help 
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clinicians in the very early detection of AD to allow targeted 

therapeutic interventions and to monitor the response to 

treatment. Techniques are being developed to address these 

needs by using information derived from multimodal (i.e., 

clinical, neuroimaging, and biochemical) data [3], [4]. 

We conjecture that the healthcare of subjects with MCI 

and AD would greatly benefit from the creation of a 

“Bioprofile” able to identify the likelihood of progressing to 

AD at the MCI stage. The Bioprofile could also help to run 

Clinical Trials (CTs) in AD. Conceptually, a Bioprofile is a 

personal “fingerprint” that fuses together a person‟s bio-

history. It contains the temporal evolution of his or her 

biomedical data and the results of automated decision-

support tools (Machine Leaning) for diagnosis, prognosis, 

and monitoring of health [5]. The concept of Bioprofile may 

be useful to characterize diseases and detect them early. By 

applying suitable analysis algorithms to diverse biomedical 

variables, the Bioprofile may reveal the pattern of a specific 

disease in the subject‟s biodata. This idea is particularly 

appealing in complex conditions, such as AD [5], that evolve 

over a long period of time. With a Bioprofile of AD, it 

would be possible to scan the data of subjects in a patient 

(i.e., dementia) registry to look for those with the clearest 

signs of AD. By studying only this subset of patients, the 

effect of a new drug might be better shown in a CT. 

Recently, MCI and AD subjects have been analyzed with 

Machine-Learning-based approaches that can be related to 

the idea of the Bioprofile [6], [7]. One study assessed 

whether Cerebrospinal Fluid (CSF) biomarkers reflect the 

AD pathology in Cognitive Normal (CN), MCI, and AD 

subjects without using the clinical diagnosis [6]. A CSF 

“signature” of AD was revealed in 90% of AD, 72% of MCI, 

and 36% of CN subjects with un-supervised Machine 

Learning [6]. In another study, the MCI subjects were 

considered unlabeled cases because it is difficult to ascertain 

who will progress from MCI to AD when few follow-ups are 

available [7]. A semi-supervised classifier was applied to 

Magnetic Resonance Imaging (MRI) scans to divide the MCI 

subjects into “AD-like” and “CN-like” and predict their 

progression [7]. These studies show that un-supervised and 

semi-supervised Machine Learning techniques might help to 

build a Bioprofile of AD from various biodata [6], [7].  

Thus, our aim is to investigate whether a Bioprofile of AD 

emerges from clinical and/or biomarker data without using 

the diagnostic labels. This Bioprofile could help to 
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characterize AD. We also aim at assessing the utility of the 

Bioprofile in the early detection of AD at the MCI stage. We 

present preliminary results that address these two questions. 

We build on previous studies [6], [7], the idea of Bioprofile 

[5], and an un-supervised technique (k-means) [8] and we 

consider five clinical scenarios. Each scenario represents a 

different clinical infrastructure and enables us to assess the 

presence of the Bioprofile in diverse multimodal settings. 

II. MATERIALS AND METHODS 

A. ADNI Database 

Data used in the preparation of this study were obtained 

from the Alzheimer‟s Disease Neuroimaging Initiative 

(ADNI) database (www.loni.ucla.edu/ADNI). The primary 

goal of ADNI has been to test whether serial MRI, Positron 

Emission Tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined 

to measure the progression of MCI and early AD. 

Determination of sensitive and specific markers of very early 

AD progression is intended to aid researchers and clinicians 

to develop new treatments and monitor their effectiveness, as 

well as lessen the time and cost of CTs. The initial goal of 

ADNI was to recruit about 200 CN older individuals to be 

followed for 3 years, 400 people with MCI to be followed 

for 3 years, and 200 people with early AD to be followed for 

2 years. For up-to-date information see www.adni-info.org. 

B. Selection of Variables in Clinical Scenarios 

The ADNI data used in this study are as of February 7
th

, 

2011. The database was queried for basic demographic, 

clinical (number of ApoE ε4 alleles, ADAS-Cog, and MMSE 

scores), MRI [9], and CSF [10] data from CN, MCI, and AD 

subjects at baseline. This query reported 381 records. 

However, two AD and four MCI patients were excluded 

from the analysis because not all their CSF values were 

available at baseline. Thus, the analyses were carried out 

with 375 subjects, whose basic data are detailed in Table I. 

MRI is included in the differential diagnosis of AD from 

vascular dementia [11]. The hippocampal atrophy and 

cortical thickness are correlated with the clinical decline in 

AD and MCI [4], [11]. In [9], features from T1 MRI scans 

acquired at 1.5T were computed with FreeSurfer. The results 

were reviewed and minimally edited for accuracy. Additional 

details can be found in [9]. Here, we consider the average of 

the left and right hippocampal volumes normalized by the 

intra-cranial volume and entorhinal cortical thickness values. 

On the other hand, the CSF Aβ42 and p-Tau181P protein 

levels might also have diagnostic information to predict the 

conversion from MCI to AD [3], [10]. As in [6], we consider 

the Aβ42 and the log-transformed p-Tau181P values. These 

protein concentrations were measured with a multiplex 

immunoassay platform from a CSF sample obtained with a 

lumbar puncture after overnight fast [10]. We also include 

the number of ApoE ε4 alleles, a risk factor for AD [3]. 

To inspect how the Bioprofile of AD may help to the early 

detection of AD at the MCI stage, the diagnoses of all 178 

MCI subjects were retrieved at follow-ups of 6, 12, 18, 24, 

and 36 months. Not all subjects had the same number of 

follow-ups (mean: 4.12 visits). During this time, 72 MCI 

subjects progressed to AD. The follow-up diagnoses were 

not used to derive the Bioprofiles. They were used only as a 

validation of the predictive power of the Bioprofile of AD. 

C. K-Means Clustering 

The Bioprofile of AD should reveal itself from the 

subjects‟ biodata without relying on the diagnostic labels. In 

this study, we assume two underlying populations (AD-like 

and CN-like or, alternatively, pathologic and non-pathologic) 

[6]. Then, we apply clustering (i.e., unsupervised Machine 

Learning) to integrate the information from diverse variables 

into relevant disease patterns [8]. Given a set of instances, 

the clustering splits them into categories to explore their 

structure and provide insights for further analyses [8]. 

We categorize the subjects‟ data with k-means, an iterative 

distance-based clustering method [8]. Briefly, a certain 

number of clusters (k) must be specified in advance (two in 

this case: CN-like and AD-like). Then, k points are randomly 

selected as cluster centers. All data instances are assigned to 

their closest center according to the Euclidean distance. The 

cluster centers are computed as the mean of all instances 

belonging to each cluster. This process is repeated until the 

same points are assigned to the same cluster in consecutive 

iterations [8]. We have applied k-means with the Weka 

software (version 3.6.3), which provides a comprehensive 

collection of Machine Learning techniques [12]. 

D. Bioprofile Analysis in Five Clinical Scenarios 

Five different clinical scenarios are tested. The first one 

entails variables that can be obtained in a routine visit to the 

GP: two cognitive scales (ADAS-Cog and MMSE) and the 

ApoE genotype measured from a blood sample. The second 

and third scenarios include biomarkers: CSF and MRI, 

respectively. Several studies have shown the potential of 

MRI and CSF in AD diagnosis [2]–[4], [10], [11]. These 

biomarkers cover a wide range of the pathological changes in 

AD, which are hypothesized to start with abnormalities in 

Aβ42, followed by p-Tau181P and MRI atrophy [3]. The fourth 

and fifth scenarios are multimodal. Scenario four includes 

both CSF and MRI, while the fifth combines all cognitive 

TABLE I 

BASIC DATA OF THE ADNI SUBJECTS INCLUDED IN THIS STUDY 

 CN (N=106) MCI (N=178) AD (N=91) 

Gender (%) 51.9 / 48.1 65.2 / 34.8 57.1 / 42.9 

Age 76.08 ± 5.34 74.71 ± 7.41 74.94 ± 7.99 

Years of education 15.76 ± 2.81 15.78 ± 3.02 15.26 ± 3.27 

ApoE ε4 (%) 74.5 / 23.6 / 1.9 45.5 / 43.3 / 11.2 30.8 / 46.1 / 23.1 

ADAS-Cog 6.37 ± 2.93 11.67 ± 4.46 18.08 ± 6.03 

MMSE 29.10 ± 1.04 26.92 ± 1.80 23.51 ± 1.95 

Data are given as mean ± standard deviation (SD), except for the gender 

and ApoE ε4 distributions, where the relative frequencies of male / females 

and number of subjects with 0 / 1 / 2 ApoE ε4 alleles are given. 
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scales and biomarkers. These scenarios reflect the different 

clinical set-ups needed to create the Bioprofile.  

Two experiments are performed. The first involves 

clustering the subjects‟ data in each scenario and estimating 

the rate of appearance of the Bioprofile of AD in each group. 

This tests whether the Bioprofile of AD naturally emerges 

from the data and which variables may define it. The second 

experiment applies k-means only to CN and AD subjects. 

The resulting clusters are used to divide the MCIs into CN-

like and AD-like. Then, the MCI subjects‟ rate of decline to 

AD is measured to assess whether the presence of the 

pathologic Bioprofile helps in the early detection of AD at 

the MCI stage. In the two experiments, k-means only 

considers baseline data and is blind to the diagnostic labels, 

which were only used for validation purposes. 

III. RESULTS 

In Experiment 1, the rates of appearance of the Bioprofile 

of AD in the whole population of CN, MCI, and AD subjects 

were measured in five clinical scenarios. Table II gives the 

percentage of subjects that were assigned to the AD cluster 

in each case. More than 69% of the AD subjects and about 

half of the MCI individuals were always assigned to the 

pathological (i.e., AD) Bioprofile. 

In Experiment 2, k-means was applied to baseline data 

from CNs and ADs to estimate clusters that split the MCI 

group into CN-like and AD-like. Table III shows the number 

of MCI subjects assigned to each cluster. The progression to 

AD of the CN-like and AD-like MCI subjects is shown in 

Fig. 1 at several follow-ups: 6, 12, 18, 24, and 36 months. 

Larger gaps between the AD-like (red) and CN-like (blue) 

lines suggest better ability of the baseline Bioprofile to 

predict future decline from MCI to AD. A two-sided Mann-

Whitney U test was used to check the statistical significance 

(p < 0.001) of the differences in the rate of conversion. 

IV. DISCUSSION AND CONCLUSIONS 

We have carried out a preliminary assessment of the 

potential of five sets of biodata to create a Bioprofile of AD. 

This was motivated by the fact that AD is characterized by 

an unclear transient phase, which hinders the diagnosis and 

prognosis of the disease [4], [7]. Most AD patients were 

correctly assigned to the pathological cluster in all scenarios 

of Experiment 1. This confirms that un-supervised methods 

can characterize most AD subjects without being trained 

with the diagnosis labels [6]. On the other hand, the fraction 

of CN subjects assigned to the AD cluster ranged from 6.6% 

for MRI to the 33.0% for CSF. This might reflect that MRI is 

the latest biomarker to change in AD [3], [11]. The presence 

of the Bioprofile of AD in controls may indicate an 

undetected ongoing AD process [6]. The fraction of patients 

assigned to the Bioprofile of AD is smaller in Scenario 5 

than in Scenarios 2 or 4. This could be due to the fact that all 

features are equally weighted in k-means [8], [12]. Hence, 

the inclusion of variables with different information for the 

Bioprofile of AD could have affected the assignment of CNs, 

MCIs, and ADs to the Bioprofile of AD in Scenario 5. 

In Experiment 2, the follow-up information was only used 

to assess the conversion from MCI to AD diagnosis. It was 

not used to guide the assignment of MCI subjects to either 

Bioprofile. Furthermore, the Bioprofiles were based only on 

baseline data. Even so, the clustering of MCI people into 

AD-like and CN-like groups led to significant differences in 

their rates of conversion to AD in all Scenarios but the first 

one. All variables included in Scenario 1 can be obtained in 

a GP practice. Despite being closer to the clinical practice 

[4], this scenario did not perform better than the biomarkers 

in the early detection of AD at the MCI stage. On the other 

hand, MRI equipment is costly and the patients consider the 

lumbar puncture as an invasive procedure. These scenarios 

may help to assess the usefulness of various biodata in the 

creation of the Bioprofile. Every scenario entails a different 

infrastructure in clinical practice or in CTs. In this sense, 

future CTs may benefit from the creation of a Bioprofile of 

AD. Nowadays, patient registries with information from 

volunteers to participate in CTs are becoming widespread. 

The Bioprofile of AD could be compared against the data of 

the subjects in the registry to pinpoint those with higher 

likelihood of progressing to AD in the near future. The 

treatment of the CT could then be tested only on this more 

relevant subpopulation of AD-like subjects to evaluate if it 

helps in their clinical management. 

Our preliminary results indicate that MRI and CSF may 

reveal the pathological pattern of AD more clearly than the 

clinical scales and ApoE. Only the combination of all 

variables in Scenario 5 provided significant differences 

between the evolution of CN-like and AD-like subjects at the 

12-month follow-up, suggesting that a multimodal 

combination of clinical tests and biomarkers outperforms 

each modality alone. Additional analyses are needed to 

corroborate these results. There is no gold-standard in this 

setting as the diagnosis of AD can only be confirmed with an 

autopsy [2] but our results agree with previous studies [6]. 

TABLE II 

FRACTION OF CN, MCI, AND AD SUBJECTS ASSIGNED TO THE 

PATHOLOGICAL CLUSTER (BIOPROFILE OF AD) IN EXPERIMENT 1 

Clinical scenario % CN % MCI % AD 

1: MMSE+ADAS+ApoE 25.5 54.5 69.2 

2: CSF 33.0 69.7 89.0 

3: MRI 6.6 46.6 73.6 

4: CSF+MRI 18.9 68.5 90.1 

5: All 15.1 48.3 79.1 

 

TABLE III 

NUMBER OF MCI SUBJECTS IN EACH BIOPROFILE IN EXPERIMENT 2 

Clinical scenario CN-like Bioprofile AD-like Bioprofile 

1: MMSE+ADAS+ApoE 116 62 

2: CSF 52 126 

3: MRI 96 82 

4: CSF+MRI 58 120 

5: All 82 96 
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In summary, we have used k-means [8] as a first step 

towards the creation of a Bioprofile of AD [5] in five 

scenarios. The Bioprofile emerged from the subjects‟ biodata 

without considering the diagnosis [6]. Moreover, the 

presence of the Bioprofile of AD led to significantly higher 

conversion rates from MCI to AD. This could help in the 

early detection of the disease. Yet, further analyses are 

needed to fully develop this concept. These include the 

inspection of other cluster tools (e.g., Expectation-

Maximization algorithm) [8] and biomarkers (e.g., 

electrophysiological recordings and PET) [3], [5], [13]. 

Additionally, the potential of the Bioprofile in other 

neurodegenerative (e.g., Parkinson‟s Disease) or long-term 

(e.g., cancer) conditions should be investigated. 
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(a) Clinical Scenario 1: MMSE, ADAS-Cog, and number of ApoE ε4 
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(b) Clinical Scenario 2: CSF 
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(c) Clinical Scenario 3: MRI 
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(d) Clinical Scenario 4: CSF + MRI 
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(e) Clinical Scenario 5: All previous variables 

Fig. 1.  Rates of conversion from MCI to AD. The black dotted line 

indicates the conversion in the whole sample of MCI subjects. The red full 

and blue dashed lines show the rate of conversion for the subsets of AD-

like and CN-like MCI subjects according to the Bioprofile of each scenario: 

(a) MMSE, ADAS-Cog, and ApoE, (b) CSF, (c) MRI, (d) CSF and MRI, 

and (e) all previous variables. „*‟ marks follow-up points when the 

difference in the number of conversions between AD-like and CN-like 

subjects was significant (p < 0.001, two-sided Mann-Whitney U test). 
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