
  

  

Abstract—A hybrid framework integrating Random Forest 
and Logistic Regression is proposed and implemented for 
genome-wide epistasis study. The two-stage approach first uses 
random forest model to capture a pool of epistasis-prone single 
nucleotide polymorphisms (SNPs), followed by using logistic 
regression to identify the significant pair-wise epistasis SNPs. 
We tested the proposed framework on data obtained from 
Singapore Malay Eye Study (SiMES), in which, 3280 subjects 
were genotyped on Illumina 610quad arrays and optic nerve 
parameters were measured in ocular examination. Case-control 
data set is labeled by choosing the high/low end of vertical Cup-
to-Disc ratio (vCDR) values which is a measure of optic nerve 
degeneration.  Our method identified 230 pairs of interacting 
SNPs with P-values below 5×10-8.  A preliminary search 
identified a protein interaction network at a high confidence 
score of 0.9. The proteins are known to participate in the WNT 
pathway with involvement in the survival and differentiation of 
the retina ganglion cells, inferring a strong association with 
vCDR. The experimental results demonstrate that the proposed 
framework is valid and efficient for large scale epistatsis study. 

I. INTRODUCTION 
RADITIONAL methods of GWAS employ statistical 
tests to correlate single SNPs to the disease ignoring the 

possibility of interaction between these SNPs. This is 
otherwise known as single-locus GWAS. Despite the large 
number of single locus GWAS carried out, the results of 
these studies have shown limited success as a tool to identify 
interactions for complex and rare diseases [1-2]. Given the 
complicated nature of such diseases, it would be reasonable 
to postulate that its incidence is correlated to other factors 
such as gene-gene and gene-environment interactions. This 
is otherwise known as epistasis. Another reason that prompts 
the investigation into genetic interaction effects of these 
diseases is the problem of “missing heritability” which is 
described by the inter-individual inheritability identified for 
such diseases being much lower than the actual identified 
variant for these traits or diseases. 

Glaucoma refers to diseases associated to the damage or 
degeneration of the optic nerve fibers containing the 
pathways which visual information are be transferred from 
the eye to the brain. As the second leading cause of 
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blindness worldwide, Open-Angle Glaucoma had been given 
the nickname “silent thief of sight”. Early detection of Open-
Angle Glaucoma has been difficult due to its asymptomatic 
nature.  At its early stages open angle glaucoma can be 
treated with eye drops and medications [3]. GWAS of 
Glaucoma serves to address the increasing need for 
improved understanding of the pathophysiology of the 
disease which is important for its early detection. The fact 
that one of the established risk factors for Open-Angle 
Glaucoma is family heritage supports the hypothesis of a 
genetic correlation to the disease. The complex path-
ophysiology of Glaucoma make it reasonable to assume that 
this genetic correlation is epistatic in nature making it a good 
candidate of study for our framework. 

In our work we choose the definition for epistasis as the 
statistical deviation from the additive effects of two loci on 
the phenotype. This is also termed as statistical epistasis [4]. 
The main challenge in the analysis of epistatic GWAS is the 
huge amount of computational burden due to the large 
number of possibilities in terms of the permutation of SNPs. 
Many statistical and mathematical methods had been 
introduced to the field of genetics to address the immense 
computation needs of epistatic GWAS. Numerous reviews 
for these methods exist [5-7]. Popular methods in these 
reviews can be categorized by whether it is a parametric 
method. Parametric method can be subsequently classified 
as whether it is a partitioning method. Each of these methods 
has its own limitations and to date there is no single method 
that is clearly superior to others. Some of these literatures 
therefore suggest the usage of the hybrid methods 
capitalizing on the benefits the individual methods to make 
up for the limitations of another [5]. Through careful survey 
on the existing knowledge in terms of epistatic GWAS 
analysis, we propose a framework consisting of two current 
methods of analysis which are namely Random Forests a 
recursive partitioning method and Logistic Regression which 
is a non-parametric technique.  

II. METHODOLOGY 

A. Random Forests 
In this method bootstrap sampling is first carried out on 

the original large dataset and the sample is subjected to 
splitting into two categories through the choice of a SNP 
leading to a decision tree [6]. The number of the variables 
selected from the original dataset per sampling step is known 
as mtry. The split is evaluated using a purity term calculated 
from the Gini Index at a node t which is a measure of how 
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well the data is separated in the resulting nodes given by 
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where pj is the proportion of category j at node t. The 
exact criteria of which the quality of the split due to a chosen 
variable is the associated decrease in impurity, ∆i given by: 
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This way each of the SNPs votes for the splitting at each 
node. These trees are then grown until all the terminal nodes 
are at its highest purity. After a specified number of trees are 
generated the algorithm then proceeds to calculate the effect 
of each of these SNPs in the splitting for the entire “forest” 
the resulting in the Importance Variable (VI) which becomes 
a measure of the contribution of the particular SNP to the 
disease in question.  

The framework proposed in this paper implements 
Random Forest through the use of software named Random 
Jungle (RJ) v1.2.363 by Schwarz et al [9]. In terms of VI we 
have chosen to use unscaled permutation importance which 
calculates and takes the difference between two 
misclassification rates (MCR) for a given predictor variable 
in a single tree. MCR1 is calculated from comparing the 
prediction to the Out-Of-Bag (OOB) samples which are 
variables that are not chosen in the bootstrap sampling step. 
MCR2 is calculated by comparing the prediction to the 
permutated OOB sample and the recorded permutation 
importance variables is the averaged increase in the MCR 
due to a given predictor variable. (∆MCR=MCR1-MCR2) 
[8]. This VI is however known to be biased and inflated 
when the SNPs are in Linkage Disequilibrium (LD). The 
Random Jungle implementation addresses this problem 
through the introduction of Conditional Variable Importance 
(CVI) [9]. This was applied by restricting the said 
permutation to groups of observation which are assigned by 
analyzing the corresponding dependency structure of the 
trees grown. As for other parameters, we have chosen 
number of trees as 10 000 and mtry = 0.1M which is 55783 
since M is the total number of predictor variables or SNPs. 
30 iterations were conducted to even out variations in CVI. 

There is however another inherent problem with the use of 
Random Forests algorithm which remains unsolvable in 
current implementations. As mentioned a vast amount of 
data need to be processed in epistatic GWAS analysis, this 
results in the high dimensionality of the data used. In this 
case high dimensionality, refers to the M≈N or M>>N 
whereby N is the number of samples (individuals). Random 
Forest predictive ability has been shown to have decreased 
for such situations. 

B. Logistic Regression 
On the investigation of epistatic GWAS, logistic 

regression can be modified to include a term to account for 
the interaction between the SNPs investigated using the 
following equation:  
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Whereby φ represents the probability of the onset of the 
disease and βx and βy are coefficients which indicate the 
main effects of the SNP 1 and 2 while βxy shows the extent 
of gene-gene interaction and thus is a measure of epistasis. 
The logistic regression method detects the association of 
predictors (SNPs) individually (βx and βy) to the outcome 
(disease) along with the interaction effects (βxy) these 
predictors have on the outcome. The above equations forms 
a model are which the data from the large dataset can be 
tested against it with the null hypothesis being the marker 
(SNP) chosen has no association to the outcome of interest 
(disease) and the result is the P-value of this test. 

As with any single method applied to epistatic GWAS 
analysis, the main problem with logistic regression is its 
inability to deal with the high dimensionality of the data. 
Problems associated to this include higher tendencies to 
detect false positives and decreased in ability to detect gene-
gene interactions [5]. The other problem in the use of 
logistic regression in detecting epistasis is that high amount 
of computational time required.  

In our proposed framework, logistic regression is carried 
out using v1.07 of the PLINK software by Purcell et al [10].  
As with all other implementation of tests for epistasis using 
logistic regression this software suffers from the large 
amount time and computational power required for epistatic 
analysis on whole genome data.  

C. Rationale of hybrid method 
Random Forest on a large sample can be time consuming 

due to the huge number of trees that needs to be grown and 
the large number of SNPs drawn in each bootstrap sample 
for the analysis to be reliable. The combined method reduces 
the time consumed as we take a significantly smaller number 
of SNPs from Random Forest to logistic regression. This 
eliminates the need for results to be conclusive in terms of 
being accurate to a small number of SNPs. Thus allowing a 
relaxed requirement in terms of parameters used for RJ. This 
leads to a reduced the computational time required by the 
Random Forests segment of the purposed framework. 

Our proposed framework then makes use of logistic 
regression to investigate epistasis as the model for fitting of 
data which result from Random Forests. The reason for this 
is that it allows us to avoid the use of Logistic Regression on 
the sample with large number of SNPs thus significantly 
reduce the computational time and power required. Since 
Random Forest tests for association by allowing interaction 
while Logistic Regression tests for actual interactions, using 
them in the said sequence allows us to accurately identify 
the interactions correlated to the disease by looking at a 
smaller and more important set of data extracted from the 
original. In addition, our proposed framework also allows us 
to look at the two locus gene interaction which was not 
possible through Random Forests. Fig. 1 contains a 
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flowchart of our proposed framework. 
 

 
 

Fig. 1.  A flowchart of the proposed framework 
 

D. Data used for our study  
To test our proposed framework, we have chosen to use a 

set of population based GWAS data for Glaucoma named 
Singapore Malay Eye Study (SiMES). The data is a result of 
a study was carried out from 2004 to 2007 in an effort to 
study the causes and risk of blindness and visual impairment 
in the Singapore Malay community by the Singapore Eye 
Research Institute (SERI) [11],[12]. The dataset contains 
autosomal SNP data from 3280 individuals who were 
genotyped on Illumina 610quad arrays and had optic nerve 
parameters were measured in ocular examination. Amongst 
these individuals a set of case and control data is identified 
through their risk for Glaucoma. This is indicated by the 
vertical cup-to-disk ratio (vCDR) a parameter measured 
from retina fundus images. vCDR is a measure of the 
degeneration of optic nerves and thus represent the degree of 
risk of an individual to Glaucoma. Individuals with vCDR 
above 0.65 are considered to have highly degenerated optic 
nerves thus forming the case in our study while those with 
vCDR less than 0.3 have optic nerves which are relatively 
intact forming the control of our study. With this criterion of 
assessment, a dataset of 233 cases and 458 control subjects 
with 557,824 SNPs was generated.  

III. RESULTS 
Since RJ tests for association of the SNPs to the disease 

allowing interaction, the resulting CVIs is an indication of 
the degree of association to the disease. These CVIs can take 
negative values and zeros which are omitted as this indicates 
the lack of importance in association to the disease. SNPs 
with CVI as zero may also represent a case which the SNPs 
has not been selected for any of the trees.  An overview of 
the results of the RJ segment of the framework is shown in 
the Manhattan Plot of the –log10(CVI) in Fig. 2. SNPs with 
negative and zero CVIs are omitted due to the lack of 
contribution to the disease investigated. Each one of the 30 
iterations of RJ in the hybrid framework took about 17 
hours. Tests are performed on a parallel computing cluster 
with 16 CPUs each with 2 × Quad Core Xeon at 3.0 GHz 
(X5450) with 8GB of memory running Linux operating 
system.  Much computational time is saved in this aspect as 
RJ at our parameters would require thousands of iteration for 
it to be accurate to top few SNPs. For PLINK, our test using 
CVI10% took approximately 20 hours while a previous study 
on 90k SNPs took 14 days [6]. In terms of computational 
burden, our hybrid method has outperformed the individual 

methods. 
We now need a method to allow us to objectively evaluate 

the results from RJ to select an appropriate number of SNPs 
which will be passed on to the next segment of the proposed 
framework for Logistic Regression carried out by PLINK. 
For this purpose we propose two methods of selection: 

 
Fig. 2.  Manhattan Plot of CVI resulting from Random Jungle (30 iterations) 

 

1) Threshold selection through inspection  
For this method, we have chosen two values namely 

CVIThreshold
1 = 10-6 and CVIThreshold

2 = 3.16 × 10-6. The SNPs 
above the red lines in Fig. 2 correspond to the SNPs selected 
by CVIThreshold

1 (2801 SNPs) and those above the green line 
were selected by CVIThreshold

2 (14097 SNPs).  
2) Using a percentage threshold from CVI 

In this method, we sort the SNPs according their CVIs and 
select the top 10% (55783 SNPs) and 20% (111556 SNPs) 
which corresponds to the SNPs above the blue and brown 
line respectively in Fig. 2. The CVIs from this criterion of 
selection shall be referred to as CVI10% and CVI20%.  

Current literature suggests that the minimum P-value of 
5×10-8 is required for a SNP to be considered to have 
significant correlation to the disease studied for statistical 
tests employing the Logistic Regression model for GWAS 
[13]. Using this as a benchmark, we evaluated the results of 
PLINK in terms of number of significantly interacting SNPs, 
the results are shown in Table I.  

TABLE I 
STATISTICS OF SELECTION CRITERIA FROM RJ TO PLINK 

Selection Criteria CVIThreshold
1 CVIThreshold

2 CVI10% CVI20% 
No. of significantly 

interacting SNP pairs 0 10 72 158 

No. of SNP pairs on 
coding DNA 0 0 12 27 

Lowest P-value 10-7 10-9 10-10 10-11 

IV. DISCUSSION 
To validate the results of our proposed framework, we 

looked up an online database named dbSNP which allow us 
to map the SNPs to the genes. Logically a SNP needs to be 
on a gene which codes for protein for it exhibit epistasis. 
Therefore pairs with either SNP on noncoding regions of the 
DNA are considered to be false positives, shown in Table II.  

If the proteins coded by these genes interact, that would 

Epistatic 
SNPs

Top 
SNPs 

Logistic 
Regression 
(PLINK) 

Raw 
Genome 

Data 

Random 
Forests  

(RJ) 
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give strong evidence supporting the discovery of the 
detected pairs of epistasis SNPs. To do so, we first perform a 
search using the gene symbols resulting from dbSNP on an 
established protein-protein interaction database. For the 
purpose of our work, we have chosen to use STRING [14]. 
Amongst the 12 pairs of SNPs identified using the CVI10%, 1 
pair of interacting SNPs is found to be correlated to a 
protein-protein interaction network with a highest 
confidence score of 0.9. Within the 27 pairs of SNPs 
identified using the CVI20%, 2 pairs of interacting SNPs are 
found to have interaction with a lower confidence score of 
0.7. The statistics of these interacting pairs are shown in 
Table II. This suggests that CVI10% may be superior in 
identifying epistasis with stronger evidence in terms of 
protein-protein interaction while increasing the number of 
SNPs (i.e. from CVI10% to CVI20%) increases the absolute 
number of interactions detected. Comparing the interaction 
P-values to single locus P-values in Table II we can also see 
that our hybrid method allows the identification of SNPs 
which are not identified by single locus logistic model.  

TABLE II 
STATISTICS OF INTERACTING SNPS 

  SNP 1 SNP 2 Interaction 
P-value CVI 

Chromosome 5 13    
SNP id rs152402 rs797208    

Gene Symbol TCF7 STARD13  10% 
P-value 1.633×10-01 4.049×10-02 2.458×10-08  

Chromosome 3 5    
SNP id rs9843488 rs10062069    

Gene Symbol PDCD6IP FER  20% 
P-value 1.731×10-02 1.011×10-02  3.320×10-08  

Chromosome 3 13    
SNP id rs2970535 rs7331661    

Gene Symbol CACNA2D3 TBC1D4  20% 
P-value 6.864×10-01 4.904×10-01  4.903×10-08  

 
The improvement of the hybrid method over the 

individual methods of GWA can be shown by the results of 
comparison in Table III. The time taken for analysis was 
used as a measure of the improvement of computational 
efficiency. Our method has achieved the lowest time taken 
for epistatic analysis. The time taken for RF using RJ is 
parameter dependent, an accurate analysis on our dataset is 
estimated to take several weeks. In terms of ability to detect 
epistasis we compare the P-values and protein interaction 
network detected. The hybrid method achieved the best 
performance with a P-value  lower than single locus LR and 
the most number of protein interaction network detected.  

To prove the correlation of the protein interaction network 
with Glaucoma we refer to a genetic study done by Wang et 
al. in 2008, in which elevated expression of WNT antagonist 
is correlated to the increased IOP leading to Glaucoma. 
Several of the genes in protein interaction network identified 
are involved in the WNT expression pathway [15]. These are 
β-catenin (CTNNB1) which is a key WNT intermediate 
signaling molecule and transcription factor (TCF7) that 
mediate WNT-regulated gene expression which plays a large 
role in the survival and differentiation of retina ganglion 

cells [16]. This gives the validation on the ability of the 
hybrid framework in detecting epistasis in large scale 
studies, as it is able to identify part of a protein interaction 
network which is physiologically proven to be related to the 
maintenance of the optic nerve cells and thus Glaucoma. 

TABLE III 
COMPARISON OF METHODS OF ANALYSIS 

*identified at low (< 0.9) confidence score, #Parameter dependent 
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Method Single 
Locus (LR) 

Epistatic 
(LR) RF Hybrid 

Computation Time < 5 minutes >> 14 days  # < 7days 
Lowest P-value 10-7 N/A - 10-11 

Number of protein 
interaction networks N/A N/A 1* 2*/1 
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