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Abstract— In order to improve reproducibility and objectivity
of fluorescence microscopy based experiments and to enable the
evaluation of large datasets, flexible segmentation methods are
required which are able to adapt to different stainings and cell
types. This adaption is usually achieved by the manual adjust-
ment of the segmentation methods parameters, which is time
consuming and challenging for biologists with no knowledge on
image processing. To avoid this, parameters of the presented
methods automatically adapt to user generated ground truth
to determine the best method and the optimal parameter
setup. These settings can then be used for segmentation of the
remaining images. As robust segmentation methods form the
core of such a system, the currently used watershed transform
based segmentation routine is replaced by a fast marching level
set based segmentation routine which incorporates knowledge
on the cell nuclei. Our evaluations reveal that incorporation of
multimodal information improves segmentation quality for the
presented fluorescent datasets.

I. INTRODUCTION

Fluorescence microscopy based experiments in microbiol-
ogy or virology often require the evaluation of large datasets.
Furthermore, manual examination of such complex data is
prone to inter- and intra- observer errors. In order to improve
both, reproducibility and objectivity of such experiments,
(semi-) automatic image analysis software can be utilized.
Thereby, the robust segmentation of the image content has
shown to be the most challenging part.

Due to the variability of the experimental setup which
includes the cell type, staining or microscope setup, segmen-
tation methods must be able to adapt to the image content.
This flexibility is maintained by using a parametric image
processing chain. Thereby, the obtained segmentation perfor-
mance depends on the combination of methods that is used
for segmentation and on the adjustment of each method’s
individual parameters. Manual tuning of these parameters
is time-consuming and requires expert knowledge on image
processing. This knowledge has shown to be an obstacle for
biomedical researchers in praxis.
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In order to perform an adjustment of the segmentation
parameters without expert knowledge on image processing,
Wittenberg et. al [1] have proposed an adaptive image
analysis concept. Thereby, a small subset of reference im-
ages is selected from the complete dataset and annotated
manually. This ground truth is then used for training of a
so-called segmentation engine. During the training step, the
most effective method is selected from a pool of available
segmentation methods and its parameters are automatically
adjusted to the ground truth. This knowledge can then be
used for segmentation of the remaining images of the dataset.
Consequently, a high quality segmentation result is obtained
without manual selection of a specific segmentation method
and without manual adjustment of its parameters.

For the improvement of this adaptive segmentation
scheme, we carry out research on segmentation methods that
enable the robust segmentation of different cell types and
stainings by adjusting the workflow’s parameters. Based on
the observation that experienced users often use multiple
modalities for the recognition and splitting of confluent
cells, this procedure shall be imitated by using multimodal
segmentation methods. Assuming that each cell contains
exactly one nucleus, this knowledge about the cell nuclei can
be utilized for segmentation of the cells. Due to the automatic
parameter adaption, the time required for segmentation of
the cells should be less than 2s. We have therefore selected
the fast marching level set method (FM) [2] and investigate
its applicability for the segmentation of multimodal image
data. Particularly, appropriate speed functions are discussed.
Furthermore, the multimodal method is compared to a mono
modal watershed transform (WT) [3] based scheme.

II. MATERIALS AND METHODS

For evaluation of the described methods, two different
datasets are used. Both datasets consist of two modalities
whereof one modality depicts the cells and the other modality
shows the corresponding cell nuclei. For segmentation of the
nuclei, a WT [3] based segmentation routine is used. Then,
cells are segmented by utilizing a FM method, where the
initialization is based on the segmentation of the cell nuclei.
For the automatic adjustment of each method’s parameters, a
genetic algorithm (GA) [4] is used including three fold cross
validation. Performance of this multimodal method can then
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Fig. 1. Representative examples for the Macrophage (a) and the HeLa
dataset (c) including manually annotated ground truth cells (b) and (d). Note
that cells whose boundaries could not be determined unambiguously were
excluded from the ground truth. Image (e) shows macrophages which are
erroneously split by most human annotators. In this case nucleus information
(f) is required to perform a correct annotation of the macrophages.

be compared to the results obtained by application of the
WT based routine to the cell image.

A. Image data

The first dataset consists of 21 CD11b/APC stained images
of murine bone marrow macrophages that were stimulated
with LPS. Furthermore, a DAPI staining is used for visu-
alization of the cell nuclei. In this dataset, 421 cells have
been manually annotated by an experienced microbiologist.
The second dataset consists of 6 micrographs containing GFP
stained HeLa cells and the corresponding DAPI stained cell
nuclei. In this dataset 85 manually annotated cells serve as
ground truth. For representative examples of the datasets see
Figure 1.

Especially for the macrophage dataset, an accurate seg-
mentation of all cells is hardly possible without incorporation
of nucleus information, even for experienced users. Such an
ambiguous example is shown in Figure 1(e). Furthermore,
some cells depicted in this dataset cannot be separated
unambiguously by an experienced human user. Such cells
are not included in the manually generated ground truth as
can be seen in Figure 1.

B. Mono modal segmentation method

As the automatic parameter optimization incorporated in
our segmentation scheme requires fast and robust segmenta-

tion methods, we have implemented a WT based segmenta-
tion method. For pre-processing, Gaussian smoothing and
morphological opening by reconstruction [5] are applied,
where the strength of the Gaussian smoothing step is ad-
justable by a parameter σn determining the standard deviation
of the Gaussian function. The applied morphological opening
by reconstruction method is influenced by the radius of the
utilized structuring elements rn. After pre-processing, fore-
and background pixels are separated by a threshold opera-
tion. Therefore, a k-means clustering based method is used,
performing an efficient histogram based clustering of the
image’s intensity values. Then, all clusters except the darkest
cluster are regarded as foreground. This enables efficient
adjustment of the applied threshold value by variation of the
number of clusters kn, while preserving a small parameter
space (usually 2≤ kn ≤ 7).

After pre-processing and binarization of the image the
WT [3] is applied for separation of touching cells. The WT
is either applied to the distance transformed binary image,
to the pre-processed image or to the gradient image. Our
implementation enables adjustment of the used input images
by adjusting a parameter mn which is integrated into the
optimization step.

C. Multi modal segmentation of cells

Because WT based methods suffer from over-
segmentation, knowledge about the cell nuclei is used
for segmentation of the cells to eliminate this problem.
This knowledge can efficiently be integrated by the FM
method [2]. The FM algorithm can be described as an
initial wave front that starts moving at the boundary of each
cell’s nucleus. The front is expanding with a speed function
F(x)> 0, where x denotes the position of the current pixel.
Pixels that are likely to represent the boundary of a cell (e.g.
pixels with large gradients) can hardly be passed. This is
implemented by a small value of F(x). Cell boundaries can
then be described as points where wave fronts with different
starting labels touch each other. This enables splitting of
non overlapping cells. The appropriate choice of F(x) is
consequently crucial to obtain a good splitting performance.

Some of the depicted HeLa cells show a high noise level.
This impedes computation of robust features that can be used
for detection of the cell boundaries and for splitting of the
cells. In order to reduce the noise level, a Gaussian filter with
standard deviation σc is applied to the fluorescent image.

To prevent the fast marching level set method from running
into background tissue, foreground- and background pixels
are separated by a threshold method. In order to combine
flexibility with efficiency we use the already described k-
Means clustering based threshold scheme. The resulting
binary image is denoted as IB(x) with:

IB(x) =

{
1, if x ∈ foreground
0, else

. (1)

After separation of cells from the background, individual
cells have to be segmented and separated from each other.
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In order to improve the performance of the splitting process,
the previously segmented cell nuclei are utilized as an
initialization for the FM algorithm.

Due to the known drawback that the fast marching level
set method tends to leaking effects, the curvature term κ(x)
proposed by Nilsson [6] is modified and included in our
speed function. Modification is required because our image
contains multiple fronts starting at different cell nuclei.
Therefore, the motion of each front is tracked in an additional
label image IL(x). For estimation of the curvature κ(x), n
equally spaced points ∆xi, i = 1, ...,n that are located on a
discrete circle with radius r are analyzed. Curvature is then
estimated by counting the number of points that share the
label of the current pixel:

κ(x) =
1
n

#{i : IL(x) = IL(x+∆xi)}−
1
2
. (2)

Combining the estimated curvature with gradient informa-
tion leads to the speed function F1:

F1(x) =
1+ακ(x)

IG(x)
IB(x), (3)

where IG(x) denotes the gradient magnitude in the cell
image at position x and α determines the influence of the
curvature term.

Depending on the staining, cell nuclei most often show
different intensities than the cytoplasm of a cell. In the
Macrophage dataset, most cell nuclei appear darker than the
surrounding tissue, whereas for the HeLa cell dataset most
cell nuclei show an increased GFP intensity. This intensity
deviation leads to additional edges in the image, especially
for the HeLa cell dataset. Due to the variable magnitude
of these additional gradients, some cell nuclei cannot be
traversed by the wave front (see Figure 2). To decrease
liability to edges that are aroused by cross talk, gradient
magnitude should be decreased for pixels that are very close
to a cell nucleus. This effect is achieved by incorporation of
the distance transformed nucleus image ID(x). The obtained
speed function F2 is given by:

F2(x) =
1+ακ(x)

IG(x)∗ ID(x)d IB(x), (4)

where d denotes a weighting factor that determines the
strength of the applied a priori distance term.

Comparison of the cell and the nucleus modality for the
macrophages shows that some of the cells do not express
any GFP signal. Therefore, the cell is not visible in the GFP
modality. Such cells are initialized with the segmentation
result obtained by segmentation of the cell nuclei. Then,
growing is impeded by the binary image based term Ib(x)
except for some noise pixels. As these cells are not relevant
for the evaluation, they are removed by a heuristic post
processing step. Therefore, size of each segmented nucleus
nnucleus is compared to the size of the segmented cell ncell
and removed from the dataset if nnucleus >

ncell
1.1 .

(a) (b)

Fig. 2. Image (a) shows the segmentation result of a FM method with
a gradient magnitude based speed function (red). Furthermore, cell nuclei
are displayed in blue. This image illustrates that some cell nuclei cannot
be passed by the wave front due to the presence of large gradients (b) and
imperfect initialization.

D. Parameter optimization and cross validation

In order to enable a fair comparison of the described speed
functions, the free parameters of each method are discretized
and automatically optimized by using a genetic algorithm [4].
Therefore, the GALib [7] has been used. In order to avoid
over-fitting and to separate training from testing data, a three
fold cross validation is applied.

E. Performance Measurement

For assessment of the segmentation quality, each seg-
mented cell region Si, i = 1, ...,n is compared to the best
matching manually annotated ground truth cell Tj, j =
1, ...,m, where n denotes the number of segmented cells
and m the number of ground truth cells using the Jaccard
similarity measure [8]. The Jaccard similarity Ji j compares
the intersection between Si and Tj with the union of Si and
Tj by:

Ji j =
|Si

⋂
Tj|

|Si
⋃

Tj|
. (5)

We have chosen this similarity measurement because cor-
responding research projects evaluate the size and intensity
profiles of the cells [9]. Therefore, overlap based similarity
is more important than shape based details that would be
covered for example by the Hausdorff distance.

For optimization of the genetic algorithm, the average
Jaccard similarity is used as objective function:

O =
n

∑
i=1

Ji j. (6)

III. RESULTS

After parameter optimization, the Jaccard similarity is
evaluated for each cell. Analyzing the similarity for the HeLa
cell dataset shows that usage of the ’mono modal’ watershed
transform based segmentation method results in a median
similarity of 0.757. Incorporating knowledge on the cell
nuclei by using a Fast Marching Level set method and the
described speed function F1, the median accuracy increases
to 0.926. Segmentation performance of the speed function
F2 is comparable to performance of F1 and results in median
similarity of 0.919 for the HeLa cell dataset. Comparison
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(a) Input (b) Watershed (c) Fast March-
ing F1

(d) Fast March-
ing F2

(e) Input (f) Watershed (g) Fast March-
ing F1

(h) Fast March-
ing F2

Fig. 3. Segmentation results for the Macrophage (a, b, c, d) and the HeLa
dataset (e, f, g, h).

of the described segmentation methods on the Macrophage
dataset achieve a median Jaccard coefficient of 0.719 for
the mono modal watershed transform based method, 0.864
when using the Fast Marching Level Set method with F1
and 0.851, for F2. Figure 4 shows a box plot including
minimum, maximum, 75%, 50% and 25% quantil values for
both datasets. These results are consistent with the results
obtained by manual inspection of representative images (see
Figure 3).

IV. DISCUSSION

The obtained performance values and the example images
clearly show that the mono modal watershed transform
based segmentation method is only able to provide a basic
segmentation of the complex cells contained in the depicted
datasets. By using multimodal segmentation methods which
incorporate knowledge on the segmented cell nuclei, seg-
mentation performance is improved for both datasets. This
is achieved especially by the elimination of false positively
and false negatively detected cells. Remaining over and
under segmentation artifacts are caused by boundary cells
whose nuclei are not contained in the image and erroneously
segmented cell nuclei. Furthermore visual inspection of the
image shows that most cells are split similar to the way a
human user would split them. A high quality segmentation
result which is comparable to a manually annotated dataset
can therefore be obtained by removing erroneously split cells
in a manual post processing step. This procedure is much less
time consuming than manual annotation of the images.

V. CONCLUSIONS

We have demonstrated how multimodal information can
efficiently be integrated into a fast marching level set based
segmentation routine. Our evaluations clearly show that
usage of this multi modal information improves the Jaccard
similarity for the presented datasets compared to the water-
shed transform based mono modal scheme.

Fig. 4. Comparison of the segmentation performance for the HeLa and the
Macrophage dataset. Performance is measured by using disjunctive training
and testing data. The box plots show the performance median and 25%
and 75% quantiles. Furthermore, the minimum and maximum outliers are
displayed for each dataset.
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