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Abstract— We present an analysis of measuring stride-to-

stride gait variability passively, in a home setting using two 

vision based monitoring techniques: anonymized video data 

from a system of two web-cameras, and depth imagery from a 

single Microsoft Kinect. Millions of older adults fall every year. 

The ability to assess the fall risk of elderly individuals is 

essential to allowing them to continue living safely in 

independent settings as they age. Studies have shown that 

measures of stride-to-stride gait variability are predictive of 

falls in older adults. For this analysis, a set of participants were 

asked to perform a number of short walks while being 

monitored by the two vision based systems, along with a 

marker based Vicon motion capture system for ground truth. 

Measures of stride-to-stride gait variability were computed 

using each of the systems and compared against those obtained 

from the Vicon.  

I. INTRODUCTION 

T is estimated that between 25-35% of people 65 years or 

older fall each year [1]. Although only a small percentage 

of those falls cause severe injury, a percentage that 

increases with age, falls among the elderly are a major health 

concern. Clinical research has indicated the importance of 

monitoring gait information for a number of medical 

applications [2]. Additionally, research has identified 

specific measures of gait which may be predictive of future 

falls in older adults [3-5]. However, the majority of older 

adults do not have their gait assessed on a regular basis. 

In-home monitoring systems capable of capturing gait 

parameters on a continuous, on-going basis would greatly 

facilitate the use of such information in clinical care. A 

number of methods exist to measure gait parameters, such as 

pressure sensitive mats, accelerometer based wearable 

devices, motion capture systems, and clinical observation 

[2,6,7]. Passive, in-home vision based monitoring systems 

can offer the resolution needed for detailed measurements of 

gait parameters on a continuous basis while still addressing 

the preference of older adults for passive sensing systems 

[8]. Furthermore, research has indicated that privacy 

concerns of older adults related to vision based monitoring 

may be addressed through the use of appropriate processing 

(e.g., anonymizing through the use of silhouettes), control, 

and handling of the vision data [9].  

Studies have indicated that changes in an older adult’s gait 

such as decreased stride length and speed may in fact be 

adaptations related to the fear of falling, and may not 
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necessarily be predictive of future falls. However, these 

studies have also indicated that the amount of stride-to-stride 

variation in the measures of stride length, speed, and 

velocity are independent predictors of future falls, and, thus, 

may be useful for identifying high risk individuals [3-5].  

Prior work has investigated the accuracy of two passive, 

in-home vision based monitoring systems for capturing 

information about daily activity, (including falls and gait 

information) for the purpose of fall risk assessment, early 

illness detection, and the detection of functional decline. The 

first system consists of two low cost web cameras, while the 

second system makes use of a single Microsoft Kinect 

sensor. The calibrated web camera based system utilizes 

multiple views of the same scene, along with a silhouette 

based foreground extraction algorithm, to construct a 3D 

representation of the subject being monitored. The second 

system utilizes the depth image produced by a single 

Microsoft Kinect system, along with a simple foreground 

extraction algorithm, to produce a 3D point cloud 

representation of the subject being monitored. These 3D 

representations allow for the accurate estimation of physical 

parameters that is largely independent of the viewing angle 

or direction. Comparisons of the two systems against a 

marker based Vicon motion capture system and a GAITRite 

electronic mat have shown good agreement in extracting gait 

parameters of average right/left stride length and stride time, 

along with walking speed, for short walking sequences [10, 

11]. Prior analysis of the two vision based monitoring 

systems has not assessed the ability of those systems to 

capture these measures of stride-to-stride variation. 

This paper looks to assess the ability of the two vision 

based monitoring systems to capture the stride-to-stride 

variations that have been shown to be predictive of future 

falls in older adults. Section II of this paper reviews the 

basic setup and operation of the different monitoring 

systems. Section III contains results and analysis of 

comparing stride parameters extracted from the two systems 

to those from a Vicon motion capture system for the purpose 

of assessing stride-to-stride variation. Finally, Section IV 

provides a brief summary and discussion of future work. 

II. SYSTEMS 

A. Web-Camera 

Our web-camera based system, show in Figure 1, consists 

of two inexpensive web-cameras mounted high (~2.5m) in 

the environment. The cameras are positioned to be roughly 

orthogonal, and can be equipped with fisheye lenses with a 
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horizontal field of view of 180 degrees for complete room 

coverage. For this work, images (640x480, RGB) were 

captured from the cameras at five frames per second (fps). 

A background subtraction technique which fuses color 

and texture features is used to extract silhouettes from the 

raw images captured by the cameras, Figure 1 (c). Both 

intrinsic and extrinsic calibration parameters for each of the 

cameras are obtained a priori, allowing for the silhouettes to 

be projected into a discretized volume space, thus yielding a 

3D intersection, Figure 1 (d). The discretization is typically 

done using 2.54cm cubic voxel elements, and the system 

operates in real-time. The background models used for 

silhouette extraction are continuously updated using a fusion 

of 2D and 3D features [12]. 

Given the 3D intersection associated with a person for 

each frame in a walking sequence, the locations of footfalls 

can be extracted, Figure 1 (d). The process is based on 

intersecting the ground plane projections of voxels (from the 

3D representation) below four inches, thus filtering out all 

positions except those where the feet are stationary on the 

ground. Spatial and temporal gait parameters can then be 

estimated for the walking sequence using the locations and 

occurrence times of the footfalls [10]. 

B. Kinect  

Our Kinect based system, shown in Figure 2, makes use 

of a single Microsoft Kinect sensor device. The Kinect, 

released by Microsoft, uses actively emitted structured 

infrared (IR) light to estimate depth at each pixel using a 

single IR sensitive camera. The depth image (640x480, 11 

bit) is generated at 30 fps, and is invariant to changes in 

visible light. The Kinect also contains a standard RGB 

(color) camera. The device was designed to allow controller 

free game play on the Microsoft Xbox, which is able to 

perform skeletal tracking, gesture recognition, and more 

using the depth image [13]. 

Initially, the intrinsic, extrinsic, and stereo calibration 

parameters of the RGB and IR cameras, along with the 

parameters used for converting the raw depth values 

returned by the Kinect to distances, are estimated as 

described in [11]. A background subtraction technique is 

used to extract the foreground (silhouette) from the depth 

image, Figure 2 (b). A 3D point cloud representation of the 

extracted foreground can then be formed, Figure 2 (c). Our 

approach does not attempt to fit a skeletal model to the 3D 

point cloud. 

Given the 3D point cloud representation of a person for 

each frame in a walking sequence, gait information can be 

estimated. Due to the nature of the depth image and current 

implementation of the system the actual footfall locations 

Fig. 1. Web camera based system. (a) Cameras (positioned orthogonally). 
(b) Views of the scene. (c) Extracted silhouettes (foreground). (d) Three-

dimensional representation formed from silhouette projections, for current 

frame, along with history of extracted footfalls. 

(b) 

(c) 

(d) 

(a) 

Fig. 2 Kinect based system. (a) Single Microsoft Kinect sensor.  (b) Raw 
depth image from Kinect and extracted foreground (silhouette). (c) 3D 

point cloud representation of extracted foreground. (d) Plot of raw (red) 

and filtered (blue) correlation coefficient time series for walking 
sequence. Local maxima correspond to left footsteps, and local minima 

correspond to right footsteps. 

(d) 

(c) 

(b) 

(a) 
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cannot be obtained in the same manner as with the two-

camera system. Instead, temporal gait parameters are 

extracted from the time series of a correlation coefficient 

computed from normalized ground plane projections [11]. 

Specifically, at each frame those points from the 3D point 

cloud with a height below 20 inches are projected onto the 

ground plane. The projection is then normalized by 

subtracting the mean, and rotating based on the current 

estimated walking direction. Given the normalized 

projection, containing N points, the following correlation 

coefficient is computed: 

 

  
     
 
   

 
 

 

where xn and yn correspond to the X and Y coordinates of the 

n
th

 point in the projection. The number of left and right steps 

in a walking sequence is obtained from the time series of the 

correlation coefficient, Figure 2 (d), as the number of local 

maxima and minima respectively. 

Finally, spatial gait parameters are estimated using the 

temporal gait information, specifically the occurrence time 

of each footfall, combined with the movement of the 

centroid of the 3D point cloud during the walking sequence. 

III. EXPERIMENTAL ANALYSIS 

For this analysis, two Kinects (each acting independently) 

and two web cameras (forming our web camera based 

system) were placed in a laboratory setting containing a 

Vicon motion capture system. Figure 3 shows the layout of 

the sensors along with the approximate location of the 

walking path used. The two Kinects were positioned at 

different angles with respect to the walking path in order to 

evaluate the impact of positioning on the gait parameters 

obtained. 

A total of 18 walking sequences were collected from three 

participants. Each participant was asked to walk slowly for 

two sequences, normal for two sequences, and fast for two 

sequences. Each sequence contained between five and nine 

steps, and, thus, three to seven measurable strides. In total, 

the data set contained 87 individual strides. 

A. Individual Stride Measurements 

In order to evaluate the ability of the two systems to 

capture stride-to-stride variations, an initial analysis was 

performed to assess the measurement accuracy of individual 

strides. Specifically, the accuracy in measuring the 

parameters of length, time, and velocity associated with an 

individual stride was computed for each of the systems. The 

average difference and standard deviation of each of the 

stride parameters were computed to assess the variance 

inherent in the measurements.   

Table I shows a comparison of the individual stride 

length, time, and velocity results obtained from each of the 

systems compared to the Vicon. Stride length was measured 

as the distance from one footfall to the next footfall of the 

same foot. Stride time was measured as the time elapsed 

from the occurrence of one footfall to the occurrence of the 

next footfall of the same foot. Finally, stride velocity was 

computed by dividing the stride length by the stride time.  

The web camera system seems to outperform both of the 

Kinects when measuring the purely spatial parameter of 

stride length, whereas the results are mixed for the temporal 

parameter of stride time, and the composite parameter of 

stride velocity. Additionally, Kinect #2 appears to 

outperform Kinect #1 on all three measures. 

 

TABLE I 

  INDIVIDUAL STRIDE LENGTH COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Mean Diff. (cm) -0.70 -0.32 -0.09 

Std. Dev. (cm) 2.44 1.00 0.41 

 

INDIVIDUAL STRIDE TIME COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Mean Diff. (ms) 9.39 7.47 -29.31 

Std. Dev. (ms) 190.54 62.2 88.67 

 

INDIVIDUAL STRIDE VELOCITY COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Mean Diff. (cm/s) -0.95 -0.42 0.48 

Std. Dev. (cm/s) 1.54 0.64 1.63 

 

B. Stride-to-Stride Standard Deviation 

The average difference and standard deviation was 

computed for the stride-to-stride standard deviation of stride 

length, time, and velocity for each walking sequences. The 

results are shown in Table II.  

The statistics reported in [3] indicate that differences of 
Fig. 3. Approximate position of Kinects, web cameras, and walking path 

in laboratory environment. Lines show field of view for each device. 
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approximately 1cm, 15.4ms, and 1cm/s in the stride-to-stride 

standard deviation of stride length, time, and velocity, 

respectively, separated the average faller and non-faller. 

Statistics reported in [4] indicate that a difference of 

approximately 50ms in the stride-to-stride standard deviation 

of stride time separated the average faller and non-faller. 

Based on those numbers, the results suggest the current 

implementation of the web camera system is capable of 

measuring stride length with sufficient accuracy to be useful, 

but lacks sufficient accuracy in measuring stride time and 

velocity. Interestingly, the results also suggest that the 

current implementation of the Kinect system measures stride 

velocity with sufficient accuracy to be useful, but lacks 

sufficient accuracy in measuring the separate parameters of 

stride length and time. 

 

TABLE II 

STRIDE-TO-STRIDE STANDARD DEVIATION  

OF STRIDE LENGTH COMPARED TO VICON 

 Kinect #1 Kinect #2 Web-Camera 

Mean Diff. (cm) 2.60 1.09 0.53 

Std. Dev. (cm) 2.45 1.14 0.65 

STRIDE-TO-STRIDE STANDARD DEVIATION  

OF STRIDE TIME COMPARED TO VICON 

Mean Diff. (ms) 64.8 26.41 64.22 

Std. Dev. (ms) 104.36 42.84 33.01 

STRIDE-TO-STRIDE STANDARD DEVIATION  

OF STRIDE VELOCITY COMPARED TO VICON 

Mean Diff. (cm/s) 0.45 -0.04 2.77 

Std. Dev. (cm/s) 0.70 0.72 2.13 

IV. SUMMARY AND FUTURE WORK 

We presented an analysis of the ability of two passive, in-

home vision based monitoring systems to capture stride-to-

stride gait variability which has been shown to be predictive 

of future falls in older adults. First, measurements of length, 

time, and velocity for individual strides obtained from the 

systems were compared against those from a Vicon motion 

capture system on a set of 87 individual strides. Next, the 

ability of the systems to measure the standard deviation in 

stride-to-stride gait parameters was compared against the 

Vicon for the set of 18 short walking sequences. Results 

suggest the current implementation of the web-camera 

system may have sufficient accuracy in measuring stride-to-

stride variation in stride length, while the current 

implementation of the Kinect system may have sufficient 

accuracy in measuring stride-to-stride variation in stride 

velocity. Future work will look to refine algorithms and 

further assess the ability of these systems to measure stride-

to-stride gait variability using a larger number and variety of 

subjects and walking sequences. 

Additionally, many at-risk elderly individuals exhibit gait 

patterns for which these parameters are difficult to extract, 

such as shuffling, or the use of walking aides. We are 

currently investigating the use of the systems for quantifying 

the amount of shuffle (quick, short steps) in an individual’s 

gait, independent of actually extracting footfalls or other gait 

parameters. 

Finally, we are currently preparing to deploy the web 

camera based system in the apartments of a number of older 

adults living in an assisted care setting. Additionally, the 

frame rate of the system has been increased from five to ten 

fps which should improve the measurement of temporal gait 

parameters. Future work will look to further validate our 

passive, in-home vision based approaches for assessing fall 

risk in older adults in both laboratory and non-laboratory 

settings. 
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