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Abstract—Gait velocity has repeatedly been shown to be an 

important indicator and predictor of both cognitive and 

physical function, especially in elderly.  However, clinical gait 

assessments are conducted infrequently and cannot distinguish 

between abrupt changes in function and changes that occur 

more slowly over time.  Collecting gait measurements 

continuously in-home has recently been proposed and validated 

to overcome these clinical limitations.  In this paper, we 

describe the longitudinal analysis of in-home gait velocity 

collected unobtrusively from passive infrared motion sensors.  

We first describe a model for the probability density function of 

the in-home gait velocities.  We then describe estimation of the 

evolution of the density function over time and report 

empirically determined algorithm parameters that have 

performed well over a wide variety of different gait velocity 

data.  Finally, we demonstrate how this approach allows 

detection of significant events (abrupt changes in function) and 

slower changes over time in gait velocity data collected from a 

sample of two elderly subjects in the Intelligent Systems for 

Assessing Aging Changes (ISAAC) study. 

I. INTRODUCTION 

AIT velocity has been repeatedly shown to be an 

important predictor and indicator of both cognitive and 

physical function.  Gait velocity has been successful at 

predicting dementia [1, 2], cognitive decline [3], future 

disability [4], and future risk of hospitalization [5], 

especially in aging populations.  Other studies have 
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demonstrated a link between gait velocity and both executive 

function [6, 7] and cognition [8, 9]. 

 Despite the abundant evidence supporting gait velocity as 

an important measure of an individuals’ well being and 

health status, in practice gait velocity is typically assessed 

infrequently – often a year or more passes between 

assessments - and only in a clinical setting.  This clinical 

based gait assessment methodology suffers from several 

shortcomings including the inability to differentiate between 

abrupt changes in function and slower changes occurring 

over time.  Additionally, several visits are generally required 

before variability (which may also be an important indicator 

of function) in gait velocity can be accurately assessed.  One 

approach to overcome these limitations using passive 

infrared motion sensors to measure gait velocity 

unobtrusively in the home setting was recently proposed and 

validated [10].   

This in-home monitoring technology was developed in the 

context of the Intelligent Systems for Assessing Aging 

Changes (ISAAC) study described in detail elsewhere [11].  

Briefly, the ISAAC study seeks to use home-based 

unobtrusive sensor technology in wireless networks to 

monitor activity patterns such as gait velocity, general 

activity, and time-out-of-home to detect changes in 

cognitive, physical, and behavioral domains.  This in-home 

sensor technology has been installed in over 200 homes in 

the Portland, OR (USA) metropolitan area most of which are 

currently being monitored.  As a result, as part of the ISAAC 

study we have unobtrusively collected millions of gait 

velocity measurements from over 200 hundred subjects in 

their own residence during normal daily activities. 

In this paper, we discuss a method for longitudinal 

analysis of these in-home collected gait velocities.  We 

proceed with a brief description of the gait velocity 

measurement system and data collection followed by a 

description of a model for the probability density function of 

these gait velocities including the assumptions underlying 

this model.  We then describe an algorithm for estimating 

this density function and its evolution over time and provide 

values for the algorithm parameters that perform well both 

for abrupt changes and slower changes over time, based on 

empirical evidence.  We follow by demonstrating the 

proposed method of analysis on two subjects; one who 

suffered an acute medical event during the monitoring period 

and one who suffered a slow decline in function over time.  
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Finally, we conclude by discussing extensions of this 

methodology and future work. 

II. DATA COLLECTION, MODELING, AND ESTIMATION 

In this section, we briefly describe the in-home gait 

velocity estimation and collection followed by a model for 

the probability density function of the gait velocity 

measurements.  We then discuss the estimation procedure for 

the density function and the corresponding evolution over 

time. 

A. In-home Gait Velocity Data Collection 

A detailed description for estimating gait velocity and data 

collection is described elsewhere [10].  Here we provide a 

brief description of the procedure for completeness.  A 

sensor line is defined as a linear array of four PIR motion 

sensors placed on the ceiling with approximately 61 cm (2 ft) 

between adjacent sensors.  The field-of-view of each sensor 

is restricted to +/- 4 degrees to increase the precision of 

subject localization and prevent sensor firings unless a 

subject walks directly under a sensor.  In addition, the sensor 

line placement is chosen to be in the hallway or other narrow 

corridor to restrict the path the subject walks to be 

approximately linear with respect to the sensor line.   

As a subject walks through the line, the four sensors will 

fire sequentially giving time information about when the 

subject is underneath each of the sensors.  Since uncertainty 

exists in both specific location of the subject and time of 

firing (due to wireless transmission and time-stamping 

errors), we use a statistical linear model to relate the velocity 

of a subject to the position and time information from each 

sensor firing.  By assuming that the subject walks with 

constant velocity through the sensor line, we can use total 

least squares to estimate the velocity from the model.  While 

in general only three of the four sensors need to fire in order 

to estimate velocity, in this paper we focus on walking events 

where all four sensors have fired.  Before estimating 

velocities from the raw sensor data, we prefilter to remove 

events where the velocity is not approximately constant.  

This is done by requiring that the time between sensor firings 

of adjacent sensor pairs in the line normalized by the 

physical distance between these pairs match each other 

within a threshold based on the noise tolerance of the 

sensors.  This step prevents making estimates for cases 

where the walking event does not satisfy the model 

assumptions (such as when a subject pauses partway through 

the sensor line during the walking event).  The end results is 

an estimated gait velocity and corresponding time stamp for 

each time a subject walks though the sensor line.  

B. A Model for Gait Velocities 

For the present analysis we model gait velocities as being 

drawn independently and identically distributed from an 

underlying unknown but parameterized probability density 

function.  We assume that the parameterization of this 

density does not change much over short time scales but can 

vary over longer time scales.  In this description we have 

purposefully not defined short or long time scales as we treat 

these as user specified parameters in the following 

subsection on estimating the probability density function.  

Symbolically, we assume that 

 ~ ( )t tv f   (1) 

where tv is the observed velocity at time t governed by the 

density function ( )tf  , which is parameterized by a 

parameter vector t that is also a function of t.  We also 

require that  

 
'( ) ( ) for , ' [ , )t tf f t t a b    (2) 

for [ , )a b some short interval of time.  Equation (2) 

describes the condition on which it is appropriate to use all 

the data in the interval [ , )a b to make estimates of the 

density at time t. 

C. Density Estimation and Evolution 

The first step in estimating the underlying gait velocity 

density is to identify a reasonable density function to model 

the velocities.  While both Gaussian and Gamma families of 

distributions have been successful at modeling these 

velocities on an individual basis and have parsimonious 

parameterizations, we have found that neither type of 

distribution offers enough flexibility to adequately model the 

wide variety of empirical distributions that arise from 

different subjects.  As a result, we chose to leave the density 

function unconstrained and use kernel density estimation on 

windows of the data.  In terms of the model described above, 

we estimate the underlying distribution at time t as 
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where h is the bandwidth of the kernel K, the 

parameterization vector 
'{ ; ' [ , )}t tv t a b    consists of all 

data in the specified time window denoted by [ , )a b , and i 

indexes the n velocities used in the estimate.  Selection of the 

window [ , )a b  is what defines the short time scale for which 

we assume the density to be approximately constant.   

In addition to estimating the density function for a 

specified window of the data, [ , )a b , we also estimate the 

time t as t̂ associated with the density estimate as the average 

of the corresponding  times of all walks occurring in the 

interval.  This step is necessary due to the nature of the data 

collection step described above.  Because we only estimate a 

velocity when the sensor line detects a walking event, our 

data set consists of walks that are not equally distributed in 

time throughout the interval [ , )a b .  As a result, we must also 

estimate the time at which the density estimate is most 

representative (specifically, the time that is the average of the 

estimated velocity timestamps). 

In order to track the evolution of the density over time, we 

repeat equation (3) on new windows of data denoted by 
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1 1[ , )k ka b 
.  Each new data window is related to the prior 

window by the relationship 

 
1 1[ , ) [ , )k k k ka b a w b w       (4) 

where k indexes the data windows, w is the window length 

and ;0 1   is an overlap parameter that provides a 

degree of smoothing to the density estimates by using a 

portion of the data at the end of the prior interval in the 

estimate of the density in the next interval.  Once density 

estimates have been made at all the desired time intervals, 

the entire density function can be interpolated uniformly 

across the entire time period for which the densities were 

estimated.  This step is desired to fill in locations where the 

gait velocity data is sparse (and thus there are fewer density 

estimates), which can occur due to lack of data caused by 

subject vacations, extended time out of house, or technical 

reasons.   

 The steps described above to estimate the gait velocity 

density function and its evolution require the specification of 

several parameters.  For our implementation on the subjects’ 

data described below, we selected a window length of 

60w  days and an overlap parameter 0.25  .  We 

started the first window on the first day of available gait 

velocity data and indexed through the entire available record 

of data.  We used a Gaussian kernel defined as 
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with h selected according to Silverman’s suggestion [12]  as 
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 (6) 

We note that (6) describes an estimate of the optimal 

bandwidth for estimating an underlying Gaussian density.  

While we did not assume the underlying density was 

Gaussian, we determined empirically that this bandwidth 

allowed reasonable density estimates.  An excellent and 

thorough description of bandwidth selection and density 

estimation that motivated many of our decisions can be 

found in [12].  In order to prevent poor density estimates in 

sparse data regions, we also required at least 20 walks in 

each window to estimate a density.  Finally, we used linear 

interpolation to estimate the density function for each day 

between the first and last days of available data.  Other 

interpolations can be used if positivity constraints are 

maintained and the density estimates at each time point are 

renormalized to make the interpolated functions true 

densities.  We selected these parameters for use in the 

estimation procedure based on empirical evidence supporting 

good performance on data from a wide variety of subjects 

with both abrupt changes and slower changes over time. 

III. APPLICATION TO ELDERCARE 

In this section we show the results of applying the 

previously described algorithm to walking speed estimation 

obtained from the homes of two subjects with interesting 

data records.  These two subjects were chosen from many 

tracked subjects to illustrate the ability of the system to track 

the distribution and to detect important changes.  
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Fig. 1. An estimate of the evolution of the probability density function of 

gait velocity for subject 1 noting time and effect of the stroke in November 

of 2009.  The density values are represented by the color shown in the 

colorbar.    

A. Subject 1 

Subject 1, a 91 year old female at the time of enrollment 

in the ISAAC study, had her home installed with our in-

home assessment technology including a sensor line and 

other technology described elsewhere [13].  She was 

considered active in the technology arm of the ISAAC study 

as of November, 2007.  The results of applying the 

previously described algorithm to the gait velocity data from 

her home are shown in fig. 1. 

We discuss two features of interest in fig.1.  First, in 

August of 2008 there is a smearing in the density estimate 

that was later shown to be the result of a technical issue that 

caused the data for the month of August to be excluded.  As 

a result, estimates near this time period used fewer data 

points and thus had a higher variability in the density 

estimate leading to a smearing of the density estimate in the 

region of missing data.  More importantly is the abrupt 

decrease of approximately 30 cm/s in the gait velocity 

density (a shift in the distribution from being centered at 70 

cm/s to approximately 40 cm/s) followed by an increase over 

a few months to a stabilizing central tendency of 

approximately 55 cm/s.  Subject 1 experienced a stroke in 

November of 2009 and had a partial recovery toward pre-

stroke abilities over the next few months.  However, at least 

in terms of gait velocity her pre-stroke ability never fully 

recovered and she remained at an average walking speed 

close to 55 cm/s until her death in early 2011.  As can be 

seen in fig.1, the entire cycle of abrupt change in function 

due to stroke, partial recovery of function and stabilization at 

a new ability level is plainly shown in the evolution of the 

gait velocity density function. 

B. Subject 2 

Subject 2, a 96 year-old male at the time of enrollment in 

the ISAAC study had technology installed in his home as 

described for subject 1 and was considered active in May of 

2007.  We were able to monitor this subject until he moved 
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from his residence in a retirement community to assisted 

living in December of 2010.  The evolution of his in-home 

gait velocity density function is shown in fig. 2. 
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Fig. 2. Estimate of the evolution of the probability density function of 

subject 2 noting the time of the clinical dementia rating scale score (CDR) 

and corresponding diagnosis of mild cognitive impairment(MCI).  The 

density values are represented by the color shown in the colorbar. 

 

 Of particular note in fig. 2 is the slow decline of central 

tendency in the gait velocity distribution over time.  This 

corresponds to a transition in cognitive function as evidenced 

by the scores of this subject on the clinical dementia rating 

scale, or CDR.  Specifically, this subject first received a 

CDR score of 0.5 in 2009, indicating probable mild 

cognitive impairment (MCI).  This MCI diagnosis was 

confirmed by consensus of a neurologist and other expert 

clinical personnel.  Further, this slow decline in gait velocity 

over time preceded the subject’s move into assisted living 

thus predicting the future need for advanced care.  Both of 

these phenomena are consistent with the associations 

between gait and adverse outcomes outlined in the 

Introduction section.   

IV. CONCLUSION AND FUTURE WORK 

In this paper we discussed a novel method for analyzing 

in-home collected gait velocities.  In addition to detailing an 

algorithm to estimate the evolution of gait velocity over time 

and discussion of algorithm parameters that have worked 

well over a wide variety of subjects and gait changes, we 

demonstrated how the methodology of monitoring the 

evolution in gait velocity over time can identify changes 

associated with adverse outcomes.  Additionally, we 

demonstrated that this method is applicable for both 

detecting acute changes in gait function and tracking longer-

term changes that occur more slowly over time.  We 

demonstrated this on two subjects who have been tracked for 

over three years each who both suffered adverse health 

outcomes that were either detected or predicted by the gait 

velocity data. 

Future work will comprise two parts.  First, automatic 

algorithms will be developed that can generate relevant 

clinical alerts based on changes in the gait velocity density 

function.  Second, plots such as those shown in figs 1 and 2 

should be integrated as part of personal health records for 

elderly.  We believe that this type of visualization tool will 

aid doctors and caregivers in diagnosis and identifying 

patients at increased risk of adverse health outcomes. 
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