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Abstract— Foot clearance parameters provide useful insight
into tripping risks during walking. This paper proposes a tech-
nique for the estimate of key foot clearance parameters using
inertial sensor (accelerometers and gyroscopes) data. Fifteen
features were extracted from raw inertial sensor measurements,
and a regression model was used to estimate two key foot clear-
ance parameters: First maximum vertical clearance (mx1) after
toe-off and the Minimum Toe Clearance (MTC) of the swing
foot. Comparisons are made against measurements obtained
using an optoelectronic motion capture system (Optotrak), at 4
different walking speeds. General Regression Neural Networks
(GRNN) were used to estimate the desired parameters from
the sensor features. Eight subjects foot clearance data were
examined and a Leave-one-subject-out (LOSO) method was
used to select the best model. The best average Root Mean
Square Errors (RMSE) across all subjects obtained using all
sensor features at the maximum speed for mx1 was 5.32 mm
and for MTC was 4.04 mm. Further application of a hill-
climbing feature selection technique resulted in 0.54-21.93%
improvement in RMSE and required fewer input features.
The results demonstrated that using raw inertial sensor data
with regression models and feature selection could accurately
estimate key foot clearance parameters.

I. INTRODUCTION

The demand for real time and continuous gait monitoring
while patients perform everyday activities in uncontrolled
natural environments is rapidly increasing. Conventional
motion analysis systems such as optoelectronic motion track-
ing systems produce highly accurate and precise kinematic
measurements. However they cannot be used outside the
laboratory, require professional supervision to operate, and
are very expensive to acquire and maintain. Micro-Electro-
Mechanical systems (MEMS) Inertial Measurement Units
(IMU) are the new substitute to camera based motion anal-
ysis systems, because they are physically compact, light
weight, easy to use, and cost effective [1].

Several studies examined IMU to characterize gait abnor-
malities by analysing physical pitch, roll, and yaw rotations
of foot during walking [2]and to detect falls by monitoring
the centre of mass of the body or by using threshold based
accelerometer/ gyroscope algorithms [3], [4]. As IMUs suffer
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from noise and drift errors due to intrinsic physical sensor
properties, obtaining kinematics information such as veloci-
ties and displacement directly remains a major challenge [5].
Therefore, there is an urgent need for devising alternative
techniques to obtain displacement data from sensor based
kinematic measurements [6], [7].

Fig. 1 depicts the vertical end point trajectory of the
swing foot illustrating the key events and points: toe-off, First
maximum vertical clearance after toe-off (mx1), Minimum
Toe Clearance (MTC), maximum clearance (mx2) and heel-
contact. MTC is considered as the key event for tripping
as at MTC the vertical foot clearance is very low (1-
2cm) above walking surface and foots forward velocity is
approximately 3 times the velocity of the body centre of
mass. Using mathematical models Lai et al. [8] predicted
MTC from peak accelerations of the foot trajectory data
obtained by an optoelectronic motion tracking system and
demonstrated positive results especially when a 5-step look-
ahead procedure was applied. This motivated our work to
investigate if the technique could be extended to estimating
the key end point foot trajectory points from the acceleration
measurements directly obtained from IMU.

A preliminary study to understand the relationship be-
tween the inertial sensor data and the end point foot trajec-
tory revealed relatively high correlations for mx1 and MTC
during toe-off and just (0.06s) before toe-off [9]. This study
therefore focuses on inertial sensor features extracted around
the toe-off event to estimate mx1 and MTC. mx2 prediction
was not attempted due to its low correlation with inertial

Fig. 1. Vertical displacement of the foot trajectory during the swing phase.
Toe-off, mx1, MTC, mx2 and heel-contact events are illustrated during the
swing phase of the gait cycle.
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Fig. 3. Features extraction from AccZ data and corresponding extractions from AccX, AccY, GyroX, and GyroY at the same instance. Accelerations are
given in m/s2 and rotations are given in ◦/s

Fig. 2. Rigid body and inertial sensor arrangement on the shoe

sensor data [9], and also mx2 is not considered to be a major
tripping risk event.

Section II of this paper describes the experimental setup
and data processing techniques. Section III outlines the
experimental results and Section IV elaborates on the results
and followed by the conclusion

II. METHODOLOGY

A. Experimental Protocol

Eight healthy young subjects (5 males and 3 females; age
range 25-35 years), without any known gait disorders were
tested in the Biomechanics Laboratory of Victoria University.
Subjects wore a rigid body with 4 active IRED markers
positioned on the distal end of the right shoe. A virtual point
was digitized (indicative of the lowest point under the shoe)
as shown in Fig. 2. The active markers were tracked by an
Optotrak Certus NDI camera system and sampled at 150Hz.

A 5DOF IMU consisting of a tri-axes accelerometer (Ana-
log Devices, ADXL330) with ±3g range, 500Hz bandwidth,
330 mV/g sensitivity and a dual-axis gyroscope (InvenSense

IDG-300) with a maximum sensitivity of 500◦/s, a constant
zero rotation at 1.5V at a regulated voltage supply of 3.3V
was attached to the side of the rigid body. It was connected
to a National Instruments DAQ board and sampled at 150
Hz.

All subjects walked on a motorized treadmill at 4 different
walking speeds (2.5, 3.5, 4.5 and 5.5 km/h), each speed
condition lasted for 5 minutes with the experimental protocol
followed in [9].

B. Data Processing

Toe-off events were identified in the foot displacement
trajectory data and sensor data using anterior-posterior dis-
placement and maximum toe angular velocity measures [9].
All data processing was done in Matlab v7.2,(Mathworks,
USA).

1) Target and Feature Extraction: Foot vertical clearance
target points mx1 and MTC were extracted from Optotrak
data using local maximum, minimum algorithms. (Fig .1).
Three dimensional acceleration measurements obtained from
IMU - accelerometer are respectively foot’s acceleration
along longitudinal axis (AccZ), medio-lateral axis (AccX),
and anterior-posterior axis (AccY). Foot’s rotation about
anterior-posterior axis (GyroX) and medio-lateral axis (Gy-
roY) are measured using gyroscopes in IMU. Peak AccZ
features (F1, F2, and F3 in Fig. 3) during the toe-off event
were extracted as they were the most correlated points with
mx1 and MTC [9]. The corresponding features from the other
sensor axes i.e.: AccX: features F4, F5, F6, AccY: features
F7, F8, F9, Gyro X: features F10, F11, F12, GyroY: features
F13, F14, F15, were extracted as well. This was done for
each gait cycle.

2) Target Estimation using all sensor features: The ob-
jective was to build regression models that used input sen-
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Fig. 4. Mx1 parameter estimation error at 4.5 km/h using Hill Climbing Feature Selection (s-parameter =100). The minimum RMSE is observed when
the training features included F13, F12, F8, F2, F5, F6, F4, and F9

sor features to estimate mx1 and MTC. The Generalized
Regression Neural Network (GRNN) consisting of a radial
basis layer and a special linear layer [10] was used for
this purpose. The estimated value ŷ is obtained using the
following equation where σ is the width of the radial basis
function:

ŷ =

n

∑
k=1

yie
||x−xi ||2

2σ2

n

∑
k=1

e
||x−xi ||2

2σ2

.

The GRNN was implemented in Matlab which required
the user to select the model parameter, (s). The spread s,
is defined as the distance an input vector must be from the
neuron weight vector to be 0.5. Initially, s was varied from
0.0001 to 100 and GRNN models were constructed with
all input features (F1-F15). A leave-one-subject-out (LOSO)
cross validation method was used to obtain the best GRNN
model for each walking speed. In this method, data from one
subject was used for testing while data from the remaining
7 subjects were used to train the model. This was done in
turn for each subject. The lowest average LOSO RMSE was
used to select the best GRNN model.

3) Hill Climbing Feature Selection: A hill-climbing fea-
ture selection method [11] was then applied to improve the
estimation accuracy. The feature selection method began by
computing the LOSO RMSE for a single individual feature
using the best model parameters (i.e. spread) found in the
previous section. The best feature (providing the lowest
LOSO RMSE) was retained and the algorithm was executed
to combine the remaining features in turn with this first
feature. The second best feature in combination with the
first was retained, and the algorithm proceeded in the same
fashion until all features had been ranked and this was
done for all walking speeds. The best set of features were
the feature combination which produced the lowest LOSO
RMSE. The percentage reduction in RMSE was calculated
as:

Reduction% =
RMSEall f eatures−RMSEbest f eatures

RMSEall f eatures
×100%.

III. RESULTS

Fig. 4 depicts an example of the hill climbing feature
selection applied to estimate mx1 at 4.5 km/h (s-parameter
= 100). Combination of features F13, F12, F8, F2, F5, F6,
F4, and F9 produced the minimum RMSE error within all
combinations.

Fig. 5 compares the average RMSEs across all subjects
obtained with all sensor features and hill climbing feature
selection at 2.5, 3.5, 4.5, and 5.5 km/h.

TABLE I tabulates the RMS estimation error obtained
when the input parameters of the model included all the
sensor features, the minimum RMSE when the input param-
eters were reduced based on hill climbing feature selection
method, and the percentage reduction in RMSE for both
mx1 and MTC at different speeds. At lower speeds hill
climbing feature selection method reduced the RMSE by
6.75 - 21.93% and at highest speed the difference between
the RMSE results obtained from all sensor feature estimation
and hill climbing feature selection were very low (0.54% for
mx1 and 2.59% for MTC).

IV. DISCUSSION

In this paper we applied GRNN to estimate two important
foot end point clearances (mx1 and MTC) from raw inertial
sensor data. The results suggest that both mx1 and MTC
clearances can be accurately determined by the 3D foot
kinematics during swing phase gait initialization.

The results indicated that both mx1 and MTC were better
predictable at higher walking speeds (Fig. 5). This might be
due to the decrease in parameter variability at higher walking
speeds (for example at 2.5 km/h the mean range of mx1:
9.23-30.88 mm, maximum standard deviation (std): 0.57 mm
whereas at 5.5 km/h mean range of mx1: 11.61-29.79 mm,
maximum std: 0.38 mm). Higher walking speeds could be
perceived by the locomotor system as risky, so the aim might
be to reduce the foot clearance variability in order to improve
safety

Overall the results indicated better prediction accuracies
for mx1 clearances than MTC, which could be due to the fact
that the mx1 event is closer to the toe-off features, and thus
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Fig. 5. Comparison of training errors obtained using all sensor features vs hill climbing feature selection method a) for mx1 and b) for MTC

Speed (km/h) RMSE - mx1 (mm) Reduction % RMSE - MTC (mm) Reduction %
All Features Best Features All Features Best Features

2.5 7.08 6.61 6.75 7.09 6.47 8.77
3.5 5.38 4.77 11.47 8.78 6.86 21.93
4.5 5.89 5.48 7.00 5.92 4.95 16.43
5.5 5.32 5.30 0.54 4.04 3.93 2.60

TABLE I
RMS ESTIMATION ERRORS WITH ALL SENSOR INPUT FEATURES , WITH HILL CLIMBING FEATURE SELECTION, AND PERCENTAGE REDUCTION IN

RMSE FOR MX1 AND MTC AT 2.5, 3.5, 4.5, AND 5.5 KM/H

might have greater influences. However, the application of
feature selection offered better estimation performances for
the MTC clearances compared to mx1 clearances (TABLE
I), and this was more evident at lower walking speeds.

The optimal features consistently included F13, F12 and
F2 for mx1 prediction (features F12 and F13 are linked to
foot rotations about anterior-posterior axis and medio-lateral
axis, whereas F2 is the maximum vertical acceleration of the
foot). MTC best feature sets consistently contained F15, F9
and F2; suggesting that the maximum vertical acceleration
at toe-off to be an important contributor to vertical foot
trajectory clearances.

Further development of this regression model would in-
corporate various population groups such as healthy elderly,
tripping fallers. This would avoid the biasness involved in
selection of training data. After successful generalization, the
model could be improved to predict the future gait events.
This would facilitate rendering of bio-feedback to correct the
risky gaits in clinical applications.

V. CONCLUSION

Machine learning techniques such as GRNN along with a
feature selection algorithm have been shown to be a powerful
tool to estimate the end point foot trajectory points using
toe-off event inertial sensor data. The results are promising
because the techniques require less computational overhead
(toe-off event detection and three peak extractions) and can
be implemented on chip for portable gait monitoring systems.
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