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Abstract—Significant growth in the field of neuroscience has 
occurred over the last decade such that new application areas 
for basic research techniques are opening up to practitioners in 
many other areas. Of particular interest to many is the 
principle of neuroergonomics, by which the traditional work in 
neuroscience and its related topics can be applied to non-
traditional areas such as human-machine system design. While 
work in neuroergonomics certainly predates the use of the term 
in the literature (previously identified by others as applied 
neuroscience, operational neuroscience, etc.), there is great 
promise in the larger framework that is represented by the 
general context of the terminology.  Here, we focus on the very 
specific concept that principles in brain-computer interfaces, 
neural prosthetics and the larger realm of machine learning 
using physiological inputs can be applied directly to the design 
and implementation of augmented human-machine systems.  
Indeed, work in this area has been ongoing for more than 25 
years with very little cross-talk and collaboration between 
clinical and applied researchers.  We propose that, given 
increased interest in augmented human-machine systems based 
on cognitive state, further progress will require research in the 
same vein as that being done in the aforementioned 
communities, and that all researchers with a vested interest in 
physiologically-based machine learning techniques can benefit 
from increased collaboration.  We thereby seek to describe the 
current state of cognitive state assessment in human-machine 
systems, the problems and challenges faced, and the tightly-
coupled relationship with other research areas.  This supports 
the larger work of the Cognitive State Assessment 2011 
Competition by setting the stage for the purpose of the session 
by showing the need to increase research in the machine 
learning techniques used by practitioners of augmented 
human-machine system design. 

I. INTRODUCTION 
ETHODS by which physiological data are used in 
combination with pattern recognition and machine 

learning algorithms have become prevalent, no doubt in 
large successes in the field of and brain-computer interfaces 
(BCI;[1]-[3]). The various types of physiological data, 
themselves, that have been incorporated in a wide variety of 
BCI research including, but are certainly not limited to, 
modalities such as electroencephalography (EEG; [4]) 
electrocorticography (ECoG; [5]), functional near-infrared 
spectroscopy (fNIRS; [6]) and functional magnetic 
resonance imaging (fMRI; [7]).  While each of these 
physiological measurements are superior and inferior to each 
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other in a variety of ways (spatial resolution, temporal 
resolution, relationship to neuronal activity, associated 
hardware cost, invasiveness, etc.), EEG has been used by 
many as a popular compromise for overall practicality.  As 
such, there has also been a large focus in signal processing 
[8] and machine learning [9] as they relate specifically to 
EEG. 
 Given the tremendous successes of BCI, it’s highly 
plausible that the techniques inherent in these domains are 
also applicable to providing great improvements in other 
areas.  Indeed, this is the case, and is the central focus of the 
area of physiological cognitive state assessment, whereby an 
individual’s physiology is monitored and assessed, either 
post-hoc or in real-time, as it relates to facets of cognitive 
state, with examples such as workload [10]-[14], vigilance 
[15], fatigue [16], and emotion [17]. In highly-operational 
environments, this has often been referred to as operator 
functional state assessment (OFS; [13]-[14]). 
 There is converging evidence, as should not be surprising, 
that there is a wide overlap in both methods and challenges 
between BCI and cognitive state assessment.  While each is 
certainly unique in its intended application, there is also a 
high degree of commonality; in regard to researchers of 
cognitive state assessment, there is an overwhelming amount 
of knowledge that can be leveraged from experts in BCI.  
For practitioners of augmented systems interface design 
using physiological cognitive state assessment as the link 
between human and machine, it is critical that they approach 
signal processing, feature extraction and machine learning 
with the same rigor and level of expertise observed in the 
neuroengineering community at large. 
 As an effort to bring the two communities closer together, 
the Cognitive State Assessment Competition (2011) was 
organized to bring together researchers from the fields of 
cognitive and computational neuroscience, novel sensor 
design, BCI and cognitive state assessment in order to 
explore the commonalities (and differences) between their 
own domains of expertise.  A competitive analysis of a 
dataset from a cognitive state assessment study (where the 
manipulation of state was workload) was also organized to 
demonstrate to the larger BCI community the techniques 
used in cognitive state assessment, in hopes of spurring 
creative discussion and collaboration between researchers in 
both fields. 

II. APPLICATION AREAS FOR HUMAN-MACHINE SYSTEMS 
As noted in a recent literature review [18-19], the 

application of neuroergonomics, the “the study of brain and 
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behavior at work” [20], is highly applicable to many areas of 
United States Air Force (USAF) operations.  While [18]-[19] 
focused their efforts on USAF operations (as this was their 
directive), there is certainly a wide-ranging domain to which 
these methods could (and should) be applied, as evidenced 
in the literature review contained within.  Regardless of the 
domain of application, the major topic areas contained 
within the review for which cognitive state assessment has 
potential benefit are reviewed. 

As these volumes of literature review are, by themselves, a 
wealth of knowledge, the seminal works discussed within 
will not be treated further in this work, but left to the reader 
to explore at their leisure.  It is certainly the case that each 
area mentioned has the potential to, or has already been 
demonstrated to, benefit from robust augmented system 
design using physiological cognitive state assessment. 

III. METHODS IN COGNITIVE STATE ASSESSMENT 
While somewhat diverse in technique, many methods used 

in many cognitive state assessment paradigms are nearly 
identical to those using EEG for BCI applications.  As an 
example in the context of cognitive workload as a state, [14] 
uses power in traditional clinical frequency bands (delta [1:3 
Hz], theta [4:7 Hz], alpha [31:42 Hz], beta [14-30 Hz] and 
gamma [31-42 Hz]) of the EEG channels as the largest 
portion of their feature set.  In addition to power in the 
frequency bands, they also used power in the frequency 
bands of the vertical and horizontal electrooculogram 
(VEOG and HEOG, respectively), an analog for heart rate 
(inter-beat interval, or IBI) collected from the 
electrocardiogram (ECG), an analog of blink rate (inter-
blink interval, or IBLI) from the VEOG, and an analog of 
respiration rate (inter-breath interval, or IBRI) from the 
respiration signal.  The classifier used was a 3-layer artificial 
neural network (ANN) using backpropagation training 
(hidden layer contained the same number of nodes as the 
input layer, output layer consisted of 3 nodes for a 3-class 
classifier).  In this particular study, [14] achieved 84.9%, 
82.0% and 86.0% mean classification accuracies of a 
baseline, low workload and high workload (respectively) 
cognitive task in real-time.  Post-hoc analysis of the dataset 
that implemented feature selection based on the ranked 
saliency of the features from the training sets increased 
accuracy on the three cognitive tasks to 91.0%, 85.2% and 
88.7%, respectively. 

In general, these methods are a near perfect complement to 
methods that have been used in research focusing on BCI 
applications.  One distinct difference, however, could be the 
inclusion of measures of cognitive state that are not directly 
neurophysiological, such as heart rate, blink rate, and 
respiration, as used in [14].  These peripheral measures, 
largely associated with the autonomic nervous system, have 
been demonstrated as salient for cognitive sates such as 
workload [12] but may not lend themselves well to the goals 
of BCI.  In addition, other measures that are largely 
neurobehavioral, such as eye movements as recorded 
through eye tracking methodologies [21] could be useful for 
a variety of cognitive states.  As such, the range of unique 

and (somewhat) independent metrics that can be used for 
cognitive state assessment are not limited to purely 
neurophysiological means, which has been demonstrated to 
be of benefit [22] depending on the domain of interest. 
Again, in some applications of BCI, these methods may not 
be reasonable, feasible, or even desirable, given the nature of 
BCI itself to be largely tied to neural processes.  This 
represents one extension of traditional BCI techniques that 
cognitive state methodologies may utilize, although is 
certainly not meant to be interpreted as an advantage over 
BCI methods, but merely one possible distinction between 
the two.  As evidenced by the great progress in BCI 
research, the lack of measures not directly related to neural 
processes is certainly not stifling advances in the state-of-
the-art!   

IV. FUTURE WORK FOR ROBUST COGNITIVE STATE 
ASSESSMENT 

As with BCI, cognitive state assessment techniques suffer 
from many of the same fundamental flaws.  A breakdown in 
the ability of a pattern classifier (using data from multiple 
sessions within an hour of each other) to accurately predict 
state can be observed over the course of days, and even 
hours, as time elapses between collection of data used in the 
machine learning training set at the test set of interest [23].  
While the direct source of this variation is still unclear, a 
certain amount of it could a result of classifier overfitting [9] 
due to the limited time course represented in the training set.  
Another possibility, and an almost certainty at that, is that 
nonstationarity in the feature data over the course of time 
renders the trained weights and biases of the classifier 
unusable, as the relationship between input and output 
vectors has fundamentally changed [8], [24]-[25]. There 
could also be differences related to electrode placement, 
impedance and quality variation across multiple days, but 
some in-progress work of our own suggests that this 
variation is negligible in relation to the potential confounds 
of overfitting and nonstationarity.  Lastly, but not to be 
discounted, are differences between individuals that can be 
observed in both their task performance on a given platform 
[26] and general categorization of the most salient features 
used in their individualized model of cognitive state [27]. 

As a point of paramount importance, these same problems 
have been observed in BCI literature.  In [28], reported 
waveform shape instability in raw voltage recordings  using 
microelectrode arrays in rhesus monkeys manifests over the 
course of hours and days, although, as the authors note, 
some of this variability is likely attributable to shifts in 
positioning of the microelectrode array over time.  [8] 
observes the same phenomenon in distributions of training 
and test features and also discusses unsupervised methods 
for reducing the detrimental effects of nonstationarity.  To 
the authors’ knowledge, no such attempt to mitigate 
nonstationarity in feature distributions in the context of 
cognitive state has been attempted at the time of publication, 
although these methods warrant a high degree of merit and 
are, in fact, the largest motivation for the work presented as 
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part of the Cognitive State Assessment Competition 2011 
session. 

As far as transitioning work largely done in the laboratory 
environment to users in the applied, operational 
environment, there is also a great amount of work to be done 
in regard to sensor technologies.  Ideally, sensor 
technologies that are deployed to end-users should be non-
invasive (minimally invasive may be acceptable in some 
instances, given adequate performance improvement as a 
trade-off), robust, and minimal in form factor and quantity 
with respect to maintaining high performance accuracy.  
With respect to EEG, there has been a large investment, and 
also progress, in this effort over the last several years.  The 
authors encourage interested readers to see the review of the 
state of dry-contact and non-contact biopotential electrodes 
authored by [29].        

V. COGNITIVE STATE ASSESSMENT COMPETITION 2011 
As the main focus of this session, a competitive analysis 

of a common dataset was proposed to outline and 
demonstrate current machine learning techniques in 
cognitive state assessment, their relationship to current 
techniques in BCI, and common findings and problems 
between the two areas.  This competition, called the 
Cognitive State Assessment Competition, was facilitated by 
distributing a common dataset to contributing session 
authors. 

The dataset provided for the competition was collected 
while study participants completed the Multi-Attribute Task 
Battery (MATB; [30]).  There were 8 participants in total, 
and each participant completed 3 trials on 5 separate days.  
In each trial, segments of task difficulty intended to produce 
low, medium and high workload were presented in a random 
order, with 'transition' time between workload segments.  
This transition time was 60 seconds between low/high and 
high/low segments and 30 seconds between low/medium, 
medium/low, medium/high, and high/medium segments.  
Each segment was 5 minutes in length.  Two examples 
(random orders ‘A’ and ‘C’) is shown in Figures 1 and 2, 
respectively. 

 
Fig. 1. Example event code timeline from random order ‘A’.  In random 
order ‘A’, order of workload segments was low, medium, and then high.  
Between each different workload segment, a 30 second transition period 
was used to gradually increase workload between the starting and ending 

levels of the transition. 

 
Fig. 2.  Example event code timeline from random order ‘C’.  In random 
order ‘C’, order of workload segments was medium, low, and then high.  
Between medium and low workload, a 30 second transition period was 
used.  However, between low and high workload, a 60 second transition 

period was used. 
 

The five days of data collection for each participant were 
not sequential, but spread out over the course of one month.  
The data collection days were randomly distributed such that 
each study participant had data collection days that were one 
day, one week (two instances) and two weeks apart.  
Deviations from this paradigm were minimized to the extent 
possible, though some accommodations were made due to 
participant availability and scheduling conflicts, thus 
resulting in minor deflections from this ideal schedule for 
some participants. Table I depicts this data collection 
schedule for two of the eight participants. 
 

TABLE I 
EXAMPLE DATA COLLECTION SCHEDULES 

SUN MON TUE WED THU FRI SAT 
 Day 1  Day 1 Day 2   
    Day 3   
 Day 2      
 Day 3   Day 4   
 Day 4 Day 5  Day 5   

 
For each trial 19 channels of EEG (according to the 

International 10-20 System were collected, as well as 
peripheral measures such as ECG, VEOG, HEOG and 
respiration.  For the competition dataset, most of the 
peripheral measures were omitted so that participants could 
concentrate their efforts on creating features from only the 
EEG data.  Both VEOG and HEOG were included in the 
dataset in the event any method required them for artifact 
correction.  In total, there were 21 channels of data (19 
channels of EEG from the 10-20 System, VEOG, and 
HEOG) available. 

All 21 of these data channels were collected using the 
MICROAMPS system from SAM Technologies, Inc. (San 
Francisco, CA, USA).  MICROAMPS has default high-pass 
and low-pass filters at 0.05 [Hz] and 100 Hz, respectively, 
and a sampling rate of 256 [Hz].  Aside from these filters, no 
other processing was performed on the dataset.  All values 
are in [µV].  The 19 EEG channels were referenced to a 
single (left) mastoid.  VEOG was a bipolar channel with 
electrodes placed above and below the left eye.  HEOG was 
also a bipolar channel with electrodes placed outside the 
outer canthus of each eye.  All electrodes were tin cup 
electrodes (9 [mm]).  Impedances for the EEG channels 
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were all below [5 kΩ], and impedances for the VEOG and 
HEOG channels were all below 15 [kΩ]. 

Additional information about the competition structure 
can be referenced in the work by [31], which was a 
contribution submitted to this session as well.  In brief, the 
session organizers created labeled training and blind test sets 
on which the competition participants were allowed to 
perform an initial analysis.  This was meant to serve as a 
baseline (for reasons also discussed in [31]) whereby no 
additional information about participant or data collection 
session was available. 

At the time of this manuscript submission, all competition 
participants are active in this preliminary analysis, and many 
of their initial results should be available in their draft 
submissions.  As a follow-on to this initial analysis, the full, 
labeled dataset (including information about participants and 
data collection session) was also distributed in order to 
permit competition participants to iterate their analysis with 
knowledge of subject and data collection session (which, the 
authors feel, is of critical importance to develop robust 
models of cognitive state from machine learning 
techniques).  In addition, competition participants have been 
encourage and are pursuing the explore other recommended 
analyses with the dataset (such as using multiple days in 
training to improve resiliency to nonstationarity and 
developing learning techniques that are capable of learning 
group-level patterns).   
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