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Abstract—The Cognitive State Assessment Competition 2011 
was organized by the U.S. Air Force Research Laboratory 
(AFRL) to compare the performance of real-time cognitive 
state classification software. This paper presents results for 
QUASAR’s data classification module, QStates, which is a 
software package for real-time (and off-line) analysis of 
physiologic data collected during cognitive-specific tasks. The 
classifier’s methodology can be generalized to any particular 
cognitive state; QStates identifies the most salient features 
extracted from EEG signals recorded during different cognitive 
states or loads. 

I. INTRODUCTION 
T present there are no direct measures of a subject’s 
cognitive state.  However, to infer the cognitive state it is 

possible to use psycho-physiological techniques, in which 
changes in physiological signals that are affected by the 
cognitive state are measured and then processed using 
mathematical algorithms. Some parametric algorithms are 
based upon theoretical descriptions of the relationship 
between the cognitive state and the relevant physiological 
signals. Alternatively, some non-parametric algorithms use 
predictive models that define the cognitive state based on the 
statistical features of the physiologic data without inferences 
from a-priori psycho-physiological knowledge. 

Early work suggested that psycho-physiological measures 
could provide continuous monitoring of operator’s mental 
workload, and elucidate which cognitive modalities were 
most engaged. These measures could complement 
behavioral measures in controlling states of automation, 
especially during periods of low operator activity [1]. In the 
mid-1990s, the first biocybernetic system to estimate 
engagement in real-time based on scalp EEG power band 
ratios (alpha, beta, theta …) was developed [2].  Power band 
ratios were investigated and found to be better predictors of 
wakefulness and vigilance than any single power bands 
alone, with beta/(alpha+theta) being the most sensitive.  

QUASAR’s cognitive state classification gauge, QStates, 
has been developed alongside QUASAR’s dry EEG sensor 
technology [3] and wireless EEG system [4]. QStates is a 
software package for real-time (and off-line) non-parametric 
classification of cognitive state or mental load based on 
physiologic data collected during cognitive-specific tasks. 
QStates handles multiple sources of physiologic data (EEG, 

EOG, ECG and EMG) as input, and preprocesses each signal 
appropriately in order to extract an array of features that are 
computed for every 2 second epoch of the task.  
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The features are then combined with ground truths as 
inputs to either train a Partial Least Squares (PLS) model, or 
are used to classify a cognitive state using an existing model. 
PLS is useful in situations such as EEG analysis, where the 
number of explanatory variables (features) exceeds the 
number of observations and/or a high level of multi-
collinearity among those variables is assumed.  In contrast to 
principal components analysis (PCA), PLS creates 
components by modeling the relationship between input and 
output variables while maintaining most of the input 
variables’ information.  Efficient pre-processing code and 
the PLS core enables rapid off-line training of models and 
real-time classification of physiological data streamed via a 
software socket. 

QUASAR has used QStates to classify cognitive 
engagement and workload during a First Person Shooting 
(FPS) game and during simulated Unmanned Aerial Vehicle 
(UAV) control missions, on AugCog’s Warship Commander 
simulation, as well as on X-ray screening simulation tasks. 
Classifications accuracies averaged across more than 30 
subjects performing these varied tasks have consistently 
produced >90% accuracies on two-state classification for 
cognitive engagement, workload and fatigue [5], [6]. In 
addition, QStates has a linear gauge whose output reliably 
produces values that correlate with variable task difficulty. 
However, for the binary classification task in this paper, this 
output is not used nor discussed. 

II. COGNITIVE STATE ASSESSMENT COMPETITION 2011 
The Cognitive State Assessment Competition 2011 

(CSAC 2011) aims to compare the efficiency of various 
cognitive state gauges at classifying cognitive workload.  
Data provided to the participants by AFRL were collected 
while subjects completed the Multi-Attribute Task Battery 
(MATB) [7]. There were five days of data collection for 
each subject (number of subjects = 8), spread out over the 
course of approximately 1 month.  

On each day, the subject performed 3 sessions of the 
MATB, where the MATB task difficulty was modulated 
during each session to produce Low, Medium and High 
workload segments of 300 seconds duration. For each trial, 
19 channels of EEG and 2 channels of EOG were recorded 
at 256 Hz, and with signal bandwidth of 0.05-100Hz.  

For the competition, Low and High task data for a single 
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subject from one day and the next day (e.g. Day 1 & Day 2, 
or Day 2 & Day 3) were combined to form a single Test Set. 
This corresponded to a total of 32 sets. The data for each 
workload level were split into two 150 second segments, 
resulting in 24 files for each set. Of these, 6 were reserved 
for training and 18 for validation. The medium workload 
levels were excluded so that participants were required only 
to provide a binary state classification (High/Low). 

The Low ground truth for each test set was constructed 
from the Low task data from Session 1 on the first day, and 
the first half of the Low task data from Session 2 on the first 
day (and similarly for the High ground truth). The resulting 
450 second training files are not contiguous, which can 
present difficulties during signal processing at the boundary 
between the two workload segments.  

III. QSTATES PROCESSING 

A. Signal Preprocessing 
EEG and EOG data are filtered EOG artifact is removed 

via an adaptive algorithm using both EOG channels. The 
filtered data is then divided into 2 second epochs. 

EEG features are derived from power spectral density 
(PSD) estimations calculated for each bipolar EEG channel. 
A feature of QStates is that it calculates total of 112 features 
per EEG channel, including PSD values at individual 
frequencies, EEG power in the α, β, θ and γ bands, and 
algebraic combinations of the EEG bands. For 19 channels 
of EEG, over 20,000 EEG features are extracted. 

EOG features include the power in the VEOG and HEOG 
channels and a Blink index derived from the VEOG channel. 
The EEG and EOG features are then combined to generate a 
classifier feature vector. 

QStates also includes the capability to extract features 
from EMG and ECG data. However, the CSAC 2011 data 
did not include these channels, so they will not be discussed 
further. 

B. Signal Quality 
A Quality of Data (QoD) metric is calculated for each 

epoch, which can be used for vetting epochs prior to 
classification. The QoD is partly based upon the observed 
amplitude and also on the integrity of data within an epoch.  

C. Training Cognitive Models 
The classification method in QStates relies on a core 

algorithm of regularized PLS, following the general methods 
described by Abdi [8]. Classification models are trained 
using PLS regression on the preprocessed data and their 
associated Ground Truths.  

Normalization of each feature follows a smoothing step to 
reduce the impact of outliers and improve the stability of the 
features in the Training set. The normalization maximizes 
the separation of a feature between the two states based on 
the statistical properties of the feature in each state. 

In the process of training its models, QStates identifies the 
most salient features between the High and Low states, and 

eliminates those others that individually make no significant 
contribution to the classification, but en masse may affect 
the final result. 

D. Cognitive Classification 
QStates calculates epoch feature vectors with an update 

rate of 2 seconds. The features are normalized according to 
the parameters determined by the training data for the model 
and a weights matrix is then used to transform the input 
feature vector for each epoch into an m-dimensional latent 
vector. In practice, we have found that m=2 is sufficient to 
achieve 90% classification accuracy [5], [6]. The latent 
vectors for consecutive epochs can be averaged with a 
sliding window to provide a more stable, smoothed result. 
The results presented in this paper use an averaging of N=5. 

Classification of an epoch is an estimate of the likelihood 
that a given 2 second epoch (after averaging) belongs to the 
High state. Specifically, this is derived from the probabilities 
estimated using the multivariate normal probability density 
functions (MVNPDF) for the High and Low training data. In 
QStates, the classification output has been normalized to 
have a value between 0 (Low) and 1 (High). The division 
between two states is not necessarily at a point equidistant 
from the centers of the High and Low states in latent vector 
space because the distributions for the two states may be 
significantly different. 

IV. RESULTS AND DISCUSSION 

A. Classification Accuracy vs. Model Training Time 
The training data were split into 60 second segments and 

paired High/Low segments were used singly or combined 
with other paired segments to train set-specific models. This 
approach enabled training models using segments unaffected 
by any boundary between two workload segments. The 
models generated for this analysis were: M1 (2nd segment), 
M2 (2nd, 4th & 7th segments), M3 (1st, 2nd, 4th & 7th 
segments), M4 (1st, 2nd, 4th, 5th & 7th segments), M5 (1st, 2nd, 
4th, 5th, 6th & 7th segments) and M6 (contiguous training set). 

Workload classifications (High/Low) of each model were 
supplied to AFRL, who revealed the blind and provided 
accuracy scores based on the Ground Truths for each 
validation dataset. Files a & b are from Session 2 on Day 1, 
files c-f are from Session 3 on Day 1, and the remainder are 
from Day 2. The organizers did not reveal which sessions on 
Day 2 corresponded to individual files. 

 
Fig. 1.  Average classification accuracy for each model, averaged across all 
validation datasets.  
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Each model was found to have a maximum accuracy 
(averaged across the 18 validation files of each single set) of 
approximately 80%. The average classification accuracy 
across all models, averaged across all validation datasets (18 
files per set, 32 sets) was 62.8% (Fig. 1).  The M1 model 
possessed the lowest classification accuracy. However, 
accuracy did not improve beyond a training time of 3 
minutes (i.e. models M2 through M6). Therefore the 
discussion that follows only considers models M1 and M6. 

For comparison, as noted in the Introduction, earlier 
cognitive workload studies conducted using QStates 
reported a classification accuracy in excess of 90% for 
subject-specific models, averaged across all subjects. 

B. Variance in Classification Accuracy 
Removing the blind revealed that the validation files had 

been provided in a Low-High alternating sequence. Fig. 2 
and Fig. 3 present classification accuracies for all 18 files in 
validation sets 17 and 25, respectively. The performances of 
the M1 and M6 models are reversed between these sets, with 
M1 and M6 having accuracies (averaged across all files) of 
53.6% and 80.5%, respectively, for set 17, and 78.4% and 
56.9% for set 25. However, models classifying at close to 
chance do not classify epochs randomly. Rather, the models 
appear to preferentially classify all of the validation files as a 
single state.  

For Set 17, model M1 preferentially classifies the 
validation data as High. For Set 25, model M6 preferentially 
classifies the validation data as Low. (The exception for Set 
25 is file ‘b’, which is the 2nd half of the High task data from 
Session 2 on Day 1.) It will be shown in Section C that Set 
17 is one for which the training data is not stationary, and 
M1 predominantly classifies the training file as High. 

It is interesting to note that for the poorly performing 
models shown in Fig. 2 and Fig. 3, the most heavily 
weighted features for M1 (set 17) and M6 (set 25) are γ 
power related, which can be strongly influenced by EMG 
artifact from jaw clenching or tensioning of the back and 
neck muscles, both often associated with increased 
workload. In contrast, the top features for M6 (set 17) and 
M1 (set 25) were terms involving α, β, and θ, and therefore 
less influenced by EMG.   

Changes in muscle tension between testing or training 
conditions could potentially explain our observed 
classification differences (e.g., subject sporadically chewing 
or jaw clenching, changing posture or relaxing over course 
of sessions). Our experience indicates that training across 
these conditions has been shown to eliminate such unstable 
features from use in the models. 

Classification accuracies for individual validation sets 
could be improved or degraded by as much as 18% by 
removing gamma features from the M6 models. However, 
this did not improve overall classification efficiency, when 
averaged across all validation sets (Fig. 4).  

This analysis, however, also revealed that there is a low 
 

 
Fig. 2.  Classification accuracies for each file in validation set 17.  

 
Fig. 3.  Classification accuracies for each file in validation set 25.  

 
Fig. 4.  Average classification accuracies for M6 models with and without γ 
features, averaged across all validation sets. Error bars not included for 
clarity. 

bias in the classification of all High files from sessions not 
included in the training data files. Specifically, files d and f 
(from Session 3 on Day 1) and files h, j, k, m, o, p, and r 
(from Day 2) classify at near chance, compared to b (derived 
from a same session used for the training data), which 
classifies at 77.0% on average across all 18 validation sets. 

C. Stability of Ground Truths 
It was noted that for nearly half of the training datasets the 

M1 model had poor classification accuracies for some 
validation sets for one or both of the training files, 
characterized by a change in state (Fig. 5). In some 
instances, transitions at 300 seconds are consistent with the 
boundary between workload segments used to create the 
training files (Set 3 and Set 7). In other examples (Set 6 and 
Set 17) the transition appears to occur at the end of training 
data for M1 (120 seconds). Nominally identical workload 
tasks for sessions on the same day are notably distinct,  
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Fig. 5.  Classification of training data for 4 sets for which the High and/or 
Low states are incorrectly classified. The models were generated using the 
2nd minute of the training data set. The vertical range for each trace is 0 to 1. 

suggesting a change in the subject’s state not reflected by the 
metrics used to determine the workload ground truth. 

Aside from signal integrity issues arising from boundary 
conditions, these transitions in the classification reflect 
changes in the underlying signal properties of the EEG. The 
PSDs plotted in Fig. 6 and Fig. 7 are for segments extracted 
from the Training data for Sets 3 and 6. The bipolar channels 
displayed were selected because they were the most salient 
features selected by QStates.  

For Set 3, the PSD for M1 training data for the High task 
is characterized by greater broadband power above 5 Hz, 
compared with the Low training data. This is consistent for t 
≤ 300 seconds in the training dataset. However, for the data 
after 300 seconds this trend is reversed, and the Low and 
High tasks are incorrectly classified for t > 300 seconds. 

For Set 6, the PSDs for the M1 training data (both High 
and Low tasks) show broadband power above 15Hz that is 
consistently higher than the PSDs for data t > 120 seconds. 
The High state possessed the lower PSD values above 
15 Hz, and therefore both the High and Low tasks were 
classified as High for times > 120 seconds. 

These results demonstrate that there are differences within 
training files that suggest unstable experimental conditions, 
perhaps due to changes in posture, learning effects, electrode 
contact, etc. For Set 3 in particular, it is difficult to correct 
for these differences because the relative powers of the EEG 
(alpha, beta, gamma) in each state are inverted between 
Session 1 and Session 2 on the same day. We also observed 
state transitions close to the beginning of test files (data not 
shown), suggesting that subjects’ workload levels were 
ramping up or down on a task during test sessions. 

It is worthwhile restating that 6 validation datasets were 
from sessions recorded on the same day as the training data 
and 12 were from the next day.  If variability exists within 
training files between segments from different same-day 
sessions, or between segments within a single session, it is 
reasonable to expect that daily variability in set-up or 
subjects’ mental or physiological condition could thus cause 
further inaccuracies on two thirds of the data set. The 
discussion of Fig. 4 had already mentioned differences  
 

 
Fig. 6.  Power spectral densities of Set 3 Training data (Pz-O2) in the 
intervals 60-120 seconds (M1 training) and 300-450 seconds. PSDs were 
estimated using Welch’s method with 1 second window and 75% overlap. 
The most salient feature in the model was Pz-O2 power (4-25Hz). 

 
Fig. 7.  Power spectral densities of Set 6 Training data (F7-T3) in the 
intervals 60-120 seconds (M1 training) and 120-450 seconds. PSDs were 
estimated using Welch’s method with 1 second window and 75% overlap. 
The most salient feature in the model was F7-T3 gamma (26-40Hz). 

between same day sessions, by showing that High state files 
extracted from the non-training sessions had lower 
classification accuracies. 

Additionally, learning effects can significantly affect 
cognitive load. From our experience comparing expert and 
novice X-ray screeners performing X-ray screening tasks, 
we noted that novices had significantly higher cognitive load 
than the experts, even when every other monitored 
performance metric could not discriminate expertise levels.  
Without information about task performance, it is difficult to 
determine the influence of training effects to accurately 
classify workload and interpret the classification results. 

D. Reanalysis of Unblinded CSAC Source Data 
For this analysis, AFRL provided the competition data 

(with ground truths) for all 8 subjects (A through H) so that 
the data could be reanalyzed using QUASAR’s training 
methodology. Specifically, QUASAR recommends using 
models trained using data at the beginning and end of each 
day to train subject-specific daily models. This is intended to 
remove features that vary during the course of one day’s 
recording. 

A model was created for each day using data between 
120-180 seconds from the Low and High tasks in Session 1 
and Session 3. Gamma features were not included. The 
remaining 4 minutes each for Low/High in Sessions 1 & 3, 
and the entirety of Session 2, were used for validation.  
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Fig. 8.  Classification accuracies for subject-specific daily models for 
Subjects A through H. 
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V. CONCLUSION 
On this competition data set, QStates’ accuracy was 

62.8% when using the competition methodology. QStates 
was designed and optimized for rapid daily calibrations 
requiring 1 minute of data for each state in order to mitigate 
daily variations. When using this approach with the 
competition data set, classification accuracy went up to 
72.3%. However, neither of these results are in accordance 
with our previous experience classifying cognitive workload, 
where we average >90% classification accuracy.   

Classification accuracy is limited by the fidelity of ground 
truths to the cognitive load of the subjects. The data 
presented here appear to contain considerable variability in 
EEG features between states that are similarly labeled. These 
data present interesting points to examine and consider with 
regards to defining ground truths. Further exploration into 
the relationship between classification accuracy and testing 
day, or between accuracy and subject performance (which 
was not revealed when the blind was removed), may reveal 
interesting correlations.  
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