
  

 

Abstract— We report, as part of the EMBC meeting Cognitive 

State Assessment (CSA) competition 2011, an empirical 

comparison using robust cross-validation of the performance of 

eleven computational approaches to real-time 

electroencephalography (EEG) based mental workload 

monitoring on Multi-Attribute Task Battery data from eight 

subjects. We propose a new approach, Overcomplete Spectral 

Regression, that combines several potentially advantageous 

attributes and empirically demonstrate its superior 

performance on these data compared to the ten other CSA 

methods tested. We discuss results from computational, 

neuroscience and experimentation points of view. 

I. INTRODUCTION 

ECENT sensor technology and analysis advances in 

signal processing and machine learning make it possible 

to noninvasively monitor brain signals and derive from 

them useful aspects of a person‘s cognitive state in near real 

time [1,2]. It is now becoming feasible to integrate this 

technology into real-world, real-time systems to enhance 

human-machine interaction across a wide range of 

application domains including clinical, industrial, military 

and gaming [3,4,5,6].  

However, progress in cognitive monitoring requires 

parallel development of new recording and analysis 

methods, experimental research, and empirical studies of 

experimental data recorded under quasi-realistic yet well-

controlled operating conditions in representative subject 

populations. Such data allows often-neglected aspects of 

brain-computer interface (BCI) problems, including inter-

individual differences and day-to-day variability, to be 

addressed. The present Cognitive State Assessment (CSA) 

competition 2011, its associated experimental task and 

accumulated data therefore provide much-needed steps 

toward the development of robust methods and applications. 

Workload measurement technology has been 

incrementally improved and tuned to the point where claims 

of near-perfect accuracy are not unheard of, despite 

relatively high recording noise levels, tremendous 

complexity of the brain, and current incomplete 

understanding of the underlying brain EEG signals [7,8]. 

There is an increasing need to compare and evaluate 

cognitive state estimation methods on equal footing, in 

particular because of the great variety of experimental tasks 

that have been proposed to assess different aspects of 
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workload [8,9,10]. The ever-present risk of circular analysis 

in complex pattern recognition problems [11] also demands 

reliable and agreed-upon evaluation procedures for 

measuring estimation performance.  

A watershed separating the current state of the art of CSA 

from demonstrated robust performance in real-world settings 

is likely less the details of the estimation method applied, 

and more the amount, type and expense of the training data 

that is required to calibrate a predictive model capable of 

robust performance on later in-use data. Several factors 

make learning robust cognitive state estimation models 

difficult. First, every person has unique anatomic and 

functional brain geometry – both contributing to the 

observed inter-individual differences in the measured scalp 

signals. Second, because of non-reproducible sensor 

positioning and varying electrical conductivities at the 

electrode-skin interface every EEG recording session 

involves a sensor montage with a slightly different geometry 

and placement with respect to the underlying brain EEG 

source signals. EEG brain activity is itself highly non-

stationary at all time scales (seconds to years). Thus, the 

further any two measurements are separated in time, the 

stronger the expected differences in the observed brain 

dynamics. To develop cognitive estimation methods that 

(like some recent voice recognition systems) do not require 

lengthy, repeated calibration or individualization, there is a 

need for data sets that span multiple sessions from a large 

number of individuals. 

In this initial phase of the CSA competition, the main goal 

is to establish a performance baseline for current state-of-

the-art methods for real-time monitoring of workload. The 

results we present here are restricted to predictive estimation 

– performing a two-class discrimination task between ―high‖ 

and ―low‖ workload levels – of the performance of CSA 

systems that are trained on relatively short (7.5 minutes x 2 

conditions), low-density (19 EEG + 2 EOG channel) data 

recorded from the same person on the same day and using 

the same montage as the data on which they are to be tested. 

We present preliminary performance comparisons of several 

state-of-the-art CSA methods including a new computational 

approach, introduced here, that leverages recent advances in 

convex optimization and statistical modeling of brain 

sources via a recent extension of Independent Component 

Analysis (ICA). Other results to be presented at EMBC 2011 

will also evaluate performance of methods trained across 

days and montages. 
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II. MATERIALS AND METHODS 

A. Overview 

Most approaches for real-time mental state estimation from 

the EEG (or other physiological measures) of a person can 

be understood as signal processing systems that translate 

biosignals into a time-varying (and often binary) output [12], 

in this case a workload index [8,10]. In recent years, these 

and other cognitive monitoring systems have adopted a 

(supervised) machine learning approach to adaptively learn 

person-specific and session-specific parameters from 

calibration data [5,12,13]. This gives rise to a two-stage task. 

First, given a calibration recording with known ‗workload-

level‘ labels, learn a predictive model. Second, given some 

period of previously unseen signal, predict or estimate its 

respective workload index using the previously trained 

model.  

The workload estimators reviewed and compared below 

operate on spectral features of the signal, thereby capturing 

features of the oscillatory dynamics of cortical networks we 

assume are linked to a latent factor indexing mental 

workload. Existing approaches differ primarily in what 

spectral dynamics are extracted, under which assumptions, 

how the spectral estimates are computed, and how they are 

jointly mapped to produce the final CS estimate. The CSA 

methods selected below have been chosen to investigate the 

effects of a variety of these design parameters using 

common data.  

All analyses have been performed using our open-source 

BCILAB toolbox compatible with the EEGLAB signal 

processing environment for Matlab (The Mathworks, Inc.) 

[14]. The BCILAB toolbox is freely available for download 

and non-commercial use at ftp://sccn.ucsd.edu/pub/bcilab. 

The scripts used to reproduce the analyses are also available 

online at ftp://sccn.ucsd.edu/pub/csac/. 

 

B. Data 

The CSA competition data were recorded from 8 

participants each of whom performed multiple sessions of 

the Multi-Attribute Task Battery [15] over 5 days (three runs 

per day) spread out over a month. From these data, 32 data 

sets were generated by the competition organizer to serve as 

training data sets, each containing an unspecified subset of 

concatenated blocks recorded from one participant on one 

day. Each data set contains an equal amount of data 

collected under the "high workload" condition and the "low 

workload" condition. The measurements include EEG 

recorded at 19 scalp sites according to the international 10-

20 system, as well as vertical and horizontal 

electrooculographic (EOG) data measured using two bipolar 

electrode pairs. Each training set is accompanied by several 

short unlabeled test sets that form the basis for competition 

results comparison. For this purpose, we have submitted 

predicted labels for the test set for the new approach we 

propose (Section II D). 

C. Comparisons 

We contrast methods that extract spectral features directly 

from sensor signals [8] with methods that extract spectral 

features from estimated (brain) source signals [16,17]. Since 

EEG sensor signals are a linear mixture of source signals 

conveyed to the electrodes by volume conduction, this 

amounts to a choice of a linear spatial filter and a method to 

determine the filter's parameters [18,19]. Here, we compare 

a priori filters based on the surface Laplacian [20], the 

popular Common Spatial Patterns supervised learning 

approach [16] and an unsupervised "bottom-up" learning 

approach based on Independent Component Analysis [18]. 

The second method comparison, largely orthogonal to the 

first, selects the spectral features of the derived signals to use 

for CSA. Here, we compare use of fixed a priori frequency 

bands (in particular, the common delta, theta, alpha, beta, 

and high beta bands, defined here as 0.5-3, 4-7, 8-12, 13-30, 

and 31-42 Hz, respectively) [21,22] versus PCA-based 

power spectral dimensionality reduction [23] or raw (high-

dimensional) Fourier amplitude estimates. A third 

comparison here is the choice of spectral estimator: Welch-

type windowed FFT [24] or multi-taper spectral estimation 

[25]. We use higher-quality estimators (in particular multi-

taper spectral estimation, here using 15 tapers) where 

applicable. An aspect we omitted here because of time and 

computational constraints is the use of measures of linear 

delayed dependencies between (source or sensor) signals 

such as coherence [26]. Methods taking into account such 

coupling will be discussed at the Competition session. 

Finally, we compare the application of a variety of 

machine learning methods on the resulting spectral 

estimates. Linear classifiers [27,28,29] have been shown to 

be good contenders, and are widely appreciated for to their 

speed, simplicity, and interpretability. Nevertheless, non-

linear classifiers can potentially capture richer relationships 

between signal features and cognitive state, as has been 

demonstrated empirically in some scenarios [8,30]. As our 

data is high-dimensional, we use a feature-selecting non-

linear classifier. While there exist greedy methods for 

selecting features with non-linear methods, here we test the 

use of Hierarchical Kernel Learning (HKL) [31], a recently 

proposed globally optimal method for non-linear feature 

selection that generalizes the concept of multiple-kernel 

learning by means of structured sparsity [32]. 

D. Proposed Approach 

For the given task, we propose a family of methods that 

combines several of these potential advantageous elements, 

a method we here call Overcomplete Spectral Regression 

(OSR). The method first expands the original multivariate 

sensor signal by mapping it onto an overcomplete source 

signal representation (further subdivided into a spectral 

representation), and selects, in a second step, a sparse set of 

features using a strong linear or non-linear sparse learning 

method. The first step is accomplished by Adaptive Mixture 

ICA (AMICA), a recent generalization of independent 

component analysis (ICA) into a temporal mixture of 

independent component decompositions, which is efficiently 

solvable in an EM framework using the Newton method [19] 
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The AMICA decomposition, including automatic artifact 

rejection, was performed without expert intervention using 

the BCILAB defaults. This step gave a set of linear 

unmixing matrices and models (here we chose to use 3 

models), that we concatenated into a joint, overcomplete 

component unmixing matrix. Applying this unmixing to the 

data, a set of 63 (less some duplicates) largely statistically 

independent signal components were obtained. From the 

resulting signals, spectral properties can be extracted in a 

variety of ways; here we extracted log power spectral 

density using multi-taper spectral estimation averaged over 

consecutive windows.  

Other factors that determine performance are the window 

length used for spectral estimation. We used here a moderate 

Hann window of 12 seconds and did not average outputs. To 

allow more effective later use of sparse learners, we 

decorrelated the windowed spectrum of each identified 

component process across training data segments by 

shrinkage PCA [33]. We then pruned the spectrum to the 

leading 10 principal components per component process (in 

part to save computation time). Finally, a supervised sparse 

linear or non-linear learning function was applied to the data 

to select the relevant basis function subset. In the linear case, 

the Least Angle Regression approach [28] with nested 

block-wise cross-validation to select the regularization 

parameter is a good choice and is also easily an order of 

magnitude faster than comparable methods. The effect of 

using sparse non-linear learners such as HKL on these data 

will be discussed in a subsequent report, in particular with 

respect to overcomplete source coupling parameters. 

E. Evaluation 

Empirical evaluation is a crucial step in machine learning 

studies, particularly for problems in which ground truth 

results are not available and the data generation process is 

poorly understood. In the present competition, in which each 

labeled data set is only 15 minutes in length and has an 

unknown internal block structure and the workload variable 

of interest is constrained to be slow-changing, assessing the 

predictive performance of a machine learning method 

without "double dipping" into the data [11] or over-fitting is 

a difficult challenge. We list some relevant caveats and 

approaches to tackle these problems in the following. 

The standard evaluation approach in machine learning is 

to separate the data into trials followed by cross-validation 

(either, e.g., k-fold randomized or leave-one-out) [34]. 

Because here, the trials on which the evaluation is performed 

come from a time series with multi-scale quasi-stationarity, 

the basic assumption of testing on independently and 

identically distributed trials does not apply. For this reason, 

cross-validation needs to be performed at the block 

granularity (i.e., leave-one-block-out cross-validation), with 

the block size ideally matching up with underlying natural 

boundaries in the data (as e.g. is natural in dealing with data 

from a block design experiment). Also, data within a few 

seconds from testing data should be excluded from training.  

Because some pre-processing steps compute statistics 

across trials (in particular, ICA, PCA and, to a lesser extent, 

various artifact rejection methods) these steps also have to 

be computed within the respective training data only (and be 

repeated independently for each fold of the cross-validation). 

This crucial step is easily overlooked, in some cases yielding 

drastically optimistic evaluations. Here, these considerations 

were automatically accounted for by the BCILAB toolbox, 

which partitions the data before these operations. 

The analyses below were obtained using five-fold 

blockwise cross-validation (i.e., leaving out 20% of the data 

for testing in each fold), with 15-sec boundary epochs 

ignored bordering test data blocks. Trials have been 

extracted from the raw data as 12-second windows 

overlapping by 11 seconds and tapered using the Hann 

function. Because the periods of high and low workload 

were sent to us without their original temporal relationships, 

the training / test sections were drawn separately from the 

respective two data sets. All hyper-parameters (including 

regularization parameters) were also optimized using five-

fold nested blockwise cross-validation [35]. 

III. RESULTS 

Results of comparative evaluations across the first 10 of 

the 32 data sets are presented in Table 1. A subset of the 

computationally less demanding methods, applied to all 32 

data sets, gave very similar results (results not shown). The 

proposed Overcomplete Spectral Regression method 

outperformed all other methods (both channel-based and 

spatial filter-based methods) by a wide margin (p<0.01). 

Note also that adaptive learning of relevant frequency bands 

via PCA coupled with feature selection (FFTDC-LARS; cf. 

Table 1 for the spelled-out method names) significantly out-

performed analogous methods that used fixed bands, 

including MBLP-LARS, FBCSP-VBARD, and FBCSP-

LDA (p<0.05). Further, as expected, the standard single-

band BCI methods, such as Common Spatial Patterns, 

performed significantly worse than their multi-band analogs 

(Filter Bank CSP). Among the unexpected outcomes, the 

recently-proposed and elsewhere highly successful Dual-

Augmented Lagrangian (DAL) method [36] did not perform 

significantly better than the other multi-band approaches, 

and supervised methods for learning spatial filters (CSP and 

DAL) did not improve significantly over their channel-wise 

analogs. Finally, the best channel-wise method (MTDC-

LARS) out-performed a variety of (single-band) spatially 

filtered methods, including CSP (p<0.05). 

IV. DISCUSSION 

Our evaluation was set up to be able to capture at least 

some of the block-to-block transitions between training and 

test sets, which is presumably the main reason for the 

performance estimates from other methods here being 

somewhat lower than those of comparable methods reported 

in the literature. Other factors that determine performance 

include the averaging of multiple successive classifier 

outputs or longer spectral estimation windows. In agreement 

with the literature, the analyses revealed that multiple 

frequency bands are clearly necessary for EEG-based 

workload classification. Moreover, the results suggest that 

adaptive band selection appears to be generally beneficial. 
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A key result of this study, however, is the remarkably 

good performance of the OSR method introduced here; it 

returned just over one third of the number of errors 

compared to the next best-performing method. In difficult 

estimation problems, very good results are often an indicator 

of invalid analysis methods (inadvertent ‗cheating‘); here, 

however, during careful double-checking of the results we 

have discovered no such problems. To possibly increase 

confidence in their validity and encourage additional 

comparisons, we are making our Matlab scripts available 

online for wider testing (and/or retesting).  

The main differences between OSR and other methods we 

tested is that it extracts spectral properties of maximally 

independent source signals of which many are compatible 

with an origin in anatomically and functionally distinct 

cortical source areas [37], as opposed to channel-based 

estimation methods that attempt to estimate brain (workload) 

state based on highly correlated channel mixtures of the 

underlying source signals that project to each sensor.  

While CSP (or any EEG-based algorithm involving linear 

filtering) can be said to operate indirectly on source signals, 

typically only a small fraction of the extracted signals are 

biologically interpretable; for CSP, for example, almost all 

are orthogonally constrained by the second-order (variance 

ratio) objective of the method. In contrast, OSR first 

retrieves far more signals than sensors (in our case over 60), 

a large fraction of which can be interpreted as signals 

produced by cortical patches (or equivalent dipoles) in the 

brain. Given this very large pool of data projections, the 

subsequent learning procedure must determine the set of 

relevant source signals and signal frequencies. When then 

combined with a convex linear or non-linear feature selector 

(such as l1-regularized logistic regression or hierarchical 

kernel learning), the method extracts the affected oscillatory 

properties of a parsimonious set of source processes, many 

of which are likely biologically and functionally distinct. 

Despite their relatively good performance on this 

restricted training set, it is hard to predict from it the across-

session or day-to-day behavior of any of the presented 

methods; i.e., it is entirely possible that the best method for 

these data sets has inferior performance for other data. To 

assess and address such effects, it is necessary to measure 

performance systematically across different sessions, days, 

and, ideally, subjects. The CSA competition data set 

provides a unique opportunity for this investigation, as the 

data recording schedule was spread out over a month. Given 

recordings across two or three days will allow for learning 

models that specifically account for the day-to-day 

variability. Going beyond methods that assume a 

homogeneous (unstructured) pool of training data, a setting 

that exposes this grouping structure (e.g., the session and 

subject labels) will enable the use of hierarchically 

structured statistical models including mixed-effects models 

[38], hierarchical Bayes [39], and a variety of other 

approaches that were recently proposed in the multi-task and 

transfer learning literature [40]. Being linked to the cortical 

source space, methods such as OSR should be positioned 

well for such extensions, as both high-quality data co-

registration tools, as well as anatomical (and to some extent 

functional) priors are applicable. We believe that adoption of 

these techniques in the cognitive monitoring domain, 

combined with wider data availability has great potential to 

overcome some long-standing barriers in the BCI/CSA field. 

TABLE I 
EVALUATION RESULTS 

Method 
Cross-validation 

error  
Details 

OSR 6.1 ± 5.5 Overcomplete Spectral 

Regression (error level 

decrease rel. to other methods 
is significant at p<0.01) 

MBLP-LARS 19.9 ± 11.8 Multi-band log-spectral 

power, using sparse linear 
Least-Angle Regression 

(fixed bands) 

MBLP-
LARS-SL 

19.8 ± 9.9 Multi-band log-spectral 
power on Laplacian-derived 

channels using sparse linear 

Least-Angle Regression  
MTDC-LARS 17.2 ± 9.6 Multi-taper (log-) spectral 

estimates per channel, 

decorrelated via Principal 
Component Analysis, using 

sparse linear Least-Angle 

Regression 
MT-LARS 23.1 ± 11.9 Sparse linear Least-Angle 

Regression on raw multi-taper 

(log-)spectral estimates per 
channel 

FBCSP-LDA 19.8 ± 14.7 Filter-Bank CSP using 

shrinkage Linear 
Discriminant Analysis 

FBCSP-
VBARD 

19.6 ±11.6 Filter-Bank CSP using sparse 
variational Bayes logistic 

regression 

FBCSP-HKL 20.0 ± 14.5 Filter-Bank CSP using 
Hierarchical Kernel Learning  

FB-DAL 23.4 ± 11.6 Filter-Bank Dual-Augmented 

Lagrangian 
WB-CSP 23.2 ± 13.0 Wide-band filtered CSP (7-30 

Hz) 

WB-Spec-
CSP 

22.5 ± 13.7 Wide-band filtered Spectrally 
weighted CSP (7-30 Hz) 

 Cross-validation errors given as percentage of trials misclassified. Here, 

lower is better and chance level is 50%. 

 

 

 

 

 
Fig. 1.  Topographic forward projections (filter inverses) to the scalp 

of the first 20 independent components used by OSR in set 9 (median 

performance). Note the dipolar scalp projection patterns recovered for 

some components, compatible with a source in a single cortical patch. 
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