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Abstract—With increased attention toward physiological 
cognitive state assessment as a component in the larger field of 
applied neuroscience, the need to develop methods for robust, 
stable assessment of cognitive state has been expressed as 
critical to designing effective augmented human-machine 
systems.  The technique of cognitive state assessment, as well as 
its benefits, has been demonstrated by many research groups.  
In an effort to move closer toward a realized system, efforts 
must now be focused on critical issues that remain unsolved, 
namely instability of pattern classifiers over the course of hours 
and days.  This work, as part of the Cognitive State Assessment 
Competition 2011, seeks to explore methods for ‘learning’ non-
stationarity as a mitigation for more generalized patterns that 
are stable over time courses that are not widely discussed in the 
literature. 

I. INTRODUCTION 

HILE computational neuroscience has enjoyed 
immense growth as a research field over the last 

decade, the domains to which techniques stemming from 
basic research can be applied have become ever more 
apparent.  As a framework for describing the state-of-the-art 
in neuroscience as applied to non-traditional areas, the term 
‘neuroergonomics’ [1] has been coined to describe the 
overarching idea and potential applications.  While previous 
terminology such as ‘operational neuroscience’ or ‘applied 
neuroscience’ do not necessarily differ in their meaning 
from that of neuroergonomics, the formulation of the word 
in itself demonstrates how far-reaching the benefits may be. 
 One specific area of research, cognitive state assessment, 
is perhaps one of the areas under the umbrella of 
neuroergonomics closest to seeing implementations in 
every-day life.  As recently described in [2] as ‘passive 
brain-computer interface (BCI)’, this term also emphasizes 
the general methodology behind cognitive state assessment.   
It should be noted, however, that while the techniques may 
be similar, the application areas of cognitive state 
assessment and BCI are unique and different. 

Differing terminology aside, physiological cognitive state 
assessment seeks to use neural, peripheral and behavioral 
measures to infer the ‘state’ of an individual in relation to a 
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specific context.  While not limited to the various ‘states’ 
listed here, examples in the literature can be found for states 
such as workload [3]-[7], vigilance [8], fatigue [9], and 
emotion [10]. 

As research can easily be cornered by perfectly controlled 
conditions in a laboratory environment, it is often the case 
that lessons learned and knowledge gained needs to be 
‘pushed’ into real-world environments.  As is the case with 
cognitive state assessment, which has shown great promise 
for augmenting human performance [11], the time has come 
to concern ourselves with extending the methodology such 
that it is robust enough to be considered for use in human-
machine systems. 

In the context of most research studies, the course of time 
over which cognitive state assessment has been vetted is on 
the order of hours.  Even in real-time implementations of 
cognitive state assessment, when the encompassed time is on 
the order of hours, accuracy in assessing state can be very 
high [7].  What has not been studied, to a large extent, is the 
ability of the machine learning and pattern recognition 
techniques to withstand the ‘test of time’; that is, how can 
models of state withstand the inherent non-stationarity in 
neurophysiological data [12]? 

While BCI researchers are actively pursuing the answer to 
this question, it has largely been unaddressed with respect to 
cognitive state.  This work, as well as the overall goal of the 
Cognitive State Assessment Competition (2011), is to begin 
investigating looming questions related to the stability and 
ability to generalize (resist over-fitting) of machine learning 
techniques using physiological data. 

II. METHODS 

The dataset provided for the Cognitive State Assessment 
Competiton was collected while study participants 
completed the Multi-Attribute Task Battery (MATB; [13]).  
There were 8 participants in total, and each participant 
completed 3 trials on 5 separate days.  In each trial, 
segments of task difficulty intended to produce low, medium 
and high workload were presented in a random order, with 
'transition' time between workload segments.  This transition 
time was 60 seconds between low/high and high/low 
segments and 30 seconds between low/medium, 
medium/low, medium/high, and high/medium segments.  
Each segment was 5 minutes in length. 

The five days of data collection for each participant were 
not sequential, but spread out over the course of one month.  
The data collection days were randomly distributed such that 
each study participant had data collection days that were one 
day, one week (two instances) and two weeks apart.  
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Deviations from this paradigm were minimized to the extent 
possible, though some accommodations were made due to 
participant availability and scheduling conflicts, thus 
resulting in minor deflections from this ideal schedule for 
some participants. Table I depicts this data collection 
schedule for two of the eight participants. 
 

TABLE I 
EXAMPLE DATA COLLECTION SCHEDULES 

SUN MON TUE WED THU FRI SAT 
 Day 1  Day 1 Day 2   
    Day 3   
 Day 2      
 Day 3   Day 4   
 Day 4 Day 5  Day 5   

 
For each trial 19 channels of EEG (according to the 

International 10-20 System were collected, as well as 
peripheral measures such as ECG, VEOG, HEOG and 
respiration.  For the competition dataset, most of the 
peripheral measures were omitted so that participants could 
concentrate their efforts on creating features from only the 
EEG data.  Both VEOG and HEOG were included in the 
dataset in the event any method required them for artifact 
correction.  In total, there were 21 channels of data (19 
channels of EEG from the 10-20 System, VEOG, and 
HEOG) available. 

All 21 of these data channels were collected using the 
MICROAMPS system from SAM Technologies, Inc. (San 
Francisco, CA, USA).  MICROAMPS has default high-pass 
and low-pass filters at 0.05 [Hz] and 100 Hz, respectively, 
and a sampling rate of 256 [Hz].  Aside from these filters, no 
other processing was performed on the dataset.  All values 
are in [µV].  The 19 EEG channels were referenced to a 
single (left) mastoid.  VEOG was a bipolar channel with 
electrodes placed above and below the left eye.  HEOG was 
also a bipolar channel with electrodes placed outside the 
outer canthus of each eye.  All electrodes were tin cup 
electrodes (9 [mm]).  Impedances for the EEG channels 
were all below [5 kΩ], and impedances for the VEOG and 
HEOG channels were all below 15 [kΩ]. 

The competition dataset was structured such that it closely 
mirrored a real-time paradigm in which the training sets used 
as input features to the classifiers were collected a priori of 
the test sets used to evaluate the robustness of the learning 
algorithm to changes in workload.  In order to simulate a 
range of magnitudes of time between data in the training and 
test sets, each workload level from a session (3 per day) was 
split into sequential halves.  These halves, denoted as ‘a’ and 
‘b’, represent the first 50% and last 50% of data collected 
from each workload level (only differing from the real-time 
condition in that ‘b’ from the first-encountered workload 
level came prior to ‘a’ in the second-encountered workload 
level).  For each participant and each of the first four days, 
training sets were created by combining all of the first 
session and the first half (the ‘a’ half) from each workload 
state in the second session.  Test sets were then created from 
the remaining half of the second session (the ‘b’ half), all of 
the third session, and all three sessions from the next 

sequential day of data collection (thus necessitating the need 
to not create a training set from the fifth day, as there was no 
additional data for which to use as a test set).  Training sets 
were provided with labeled truth class, but not identified to 
any particular participant or day.  Test sets were blind with 
respect to truth class, participant and day; only the raw time-
series data themselves were provided (with an associated 
label to match them to a particular training set).  While this 
created a somewhat artificial environment in which to 
operate (as, in a real-world context, you would certainly 
know the identification of the participant and relation to any 
previous or planned data collections), it does facilitate a 
‘baseline’ by which learning techniques are forced to rely 
only on the information provided about the workload state, 
thus establishing an accuracy floor for investigating methods 
that use the larger context of the dataset to improve 
accuracy. 

The VEOG and HEOG channels were used to remove 
vertical and horizontal eye movement artifact from the EEG 
through a linear regression technique provided in the 
accompanying analysis software with MICROAMPS.  From 
the filtered data in each of the training and test sets, input 
features to the classifier were generated using 5-second, non-
overlapping windows of mean frequency band power (using 
1-s, non-overlapping Hanning windows) at each of the 19 
electrode sites, where the frequency bands used were delta 
(1:3 Hz), theta (4:7 Hz), alpha (8:12 Hz), beta (13-30 Hz) 
low gamma (31-58 Hz) and high gamma (62:100 Hz).  In 
addition to these features, a waveform length measure called 
the string [14, 15] was calculated for each window using the 
average of 1-second, non-overlapping windows contained 
within (analogous to the 1-second, non-overlapping Hanning 
window used to compute the frequency band features).  In 
total, 133 features were created and used as inputs to 3-layer 
artificial neural network (ANN), with backpropagation 
training, where the hidden layer contained the same number 
of nodes as the input layer (133), and the ouput layer 
contained two nodes (one for each cognitive state, or 
workload, class). 

For each training set, estimation of the unbiased accuracy 
was calculated by randomly separating the data into 50% 
training, 25% validation and 25% test.  Normalization 
parameters (N(0,1)) were derived from the training set and 
applied to the validation and within-training test sets (as well 
as the independent post-hoc training sets).  Because of the 
relatively small amount of data in the within-training test set 
(approximately 45 samples in validation, 45 samples in the 
within-training test set and 90 samples in the training set), a 
10-fold randomization of the training/validation/within-
training test sets was used in lieu of a full 10-fold cross-
validation.  Trained classifiers (weights and biases for each 
of the 10 randomized folds) were then applied in the feed-
forward direction to calculate classification accuracies on the 
post-hoc test sets. 

With the accuracies of the within-training test set and the 
post-hoc set, it’s possible to begin to assemble accuracies of 
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the learning algorithm as they evolve with distance in time 
from the training set.  To establish orders of magnitude 
related to time, let the within-training test set be referred to 
as being ‘seconds’ away from the training set (as each 5-s, 
non-overlapping, independent window, given random 
sampling, is likely to be on the order of seconds away from a 
feature vector that was used for training and/or validation).  
Similarly, the ‘b’ half of the second session can be viewed as 
minutes away from the training set, the third session as being 
an hour away from the training set, and the next sequential 
day as being day(s) away from the training set (at minimum, 
one day).  For the purpose of analysis, this convention will 
be used to described the elapsed time between the training 
set and the accuracies reported for the associated test sets. 

In order to test the effects of the number of days between 
the training set and post-hoc days test set, the results for 
each of the competition sets was averaged across 1-, 7- and 
14-day lags between data collection sessions (per Table I).  
This should help to better define the non-stationarity of the 
physiological feature data at a finer resolution on the order 
of days. 

III. RESULTS 

Results of the 10-fold randomization, with respect to the 
second/minutes/hours/days convention, are shown below in 
Table II.  In order to avoid confusion with the less biased 
accuracies from the within-training test sets, accuracies for 
the validation sets are not reported (they were slightly 
higher, on average, than the within-training test set 
accuracies). 

 
TABLE II 

ACCURACIES FROM COMPETITION DATASET 
Seconds Minutes Hours Days 
86.9% 73.8% 60.0% 55.8% 

 
 Re-ordering of the results in Table II to categorize each 
dataset by the number of days worth of lag between the 
training and post-hoc days test set resulted in the accuracies 
in Table III. 

TABLE III 
ACCURACIES FROM COMPETITION DATASET, AVERGED BY 
TIME LAG BETWEEN TRAINING SET AND POST-HOC DAY(S) 

TEST SET 
Δ Days Seconds Minutes Hours Days 

1 85.4% 69.6% 70.3% 51.9% 
7 86.7% 67.9% 61.2% 59.1% 

14 87.8% 78.9% 54.2% 56.2% 
 

IV. DISCUSSION 

From the results in Table II, it is evident that there is 
non-stationarity in the ANN as time passes between the 
training set and the post-hoc test sets.  While the post-hoc 
‘seconds’ test sets were comparable to the validation 
accuracies (although the validation accuracies were 
slightly higher), there are precipitous declines in accuracy 

of the learning algorithm from seconds to minutes, 
minutes to hours, and hours to days.  This non-stationarity 
in the physiological feature data suggest that robust results 
cannot be obtained using techniques largely derived from 
single-day laboratory research experiments. 

To examine the effects of absolute number of days 
from training set to post-hoc test set, Table II separated 
the results in Table I by the delta number of days 
separating the two sets of interest into 1-, 7- and 14-day 
categories (per Table I).  In general, the same pattern of 
non-stationarity observed in Table II can also be seen in 
Table III, thus suggesting that the worst-sense change in 
stationarity occurs at some interval between hours and 
days, regardless of the absolute number of days.  It is also 
worth noting that, at accuracies only slightly better than 
50% in the ‘days’ post-hoc test sets, the classifier is barely 
performing above chance (50% for the binary class case). 

As an analog, these same types of non-stationary are 
also observed in other areas using physiological data and 
machine learning, such as BCI.  In [16], reported 
waveform shape instability in raw voltage recordings  
using microelectrode arrays in rhesus monkeys manifests 
over the course of hours and days, although, as the authors 
note, some of this variability is likely attributable to shifts 
in positioning of the microelectrode array over time.  [12] 
observes the same phenomenon in distributions of training 
and test features and also discusses unsupervised methods 
for reducing the detrimental effects of nonstationarity.  To 
the authors’ knowledge, no such attempt to mitigate 
nonstationarity in feature distributions in the context of 
cognitive state has been attempted at the time of 
publication, although these methods warrant a high degree 
of merit and are, in fact, the largest motivation for the 
work presented as part of the Cognitive State Assessment 
Competition 2011 session. 

An unfortunate consequence of the competition dataset 
is that the non-stationarity cannot be entirely attributed to 
the physiological data with complete confidence.  As the 
training sets in this implementation were very small (in 
comparison with the 133 input features), at least some 
portion of the observed non-stationarity is likely due to 
over-fitting of the training data (even though both 
validation and ‘seconds’ class post-hoc sets were nearly 
identical in accuracy at just slightly above 85%).  Feature 
selection/reduction could have potentially improved these 
results, but was not implemented at the time of draft 
manuscript submission. 

As briefly discussed in [17], the full-labeled dataset 
was released to competition participants after their initial 
analysis on the competition dataset was performed.  This 
opens up the possibility of improving on the results shown 
here.  One possible approach which could both a) allow 
the ANN to ‘learn’ what non-stationarity looks like with 
respect to the binary workload class label, and b) increase 
the amount of data available for training (absent feature 
reduction to reduce the effects of overfitting) would be to 
begin looking at combinations of larger time periods of 
data for inclusion in the training set (more sessions across 
more days).  Post-hoc analysis performed by [18] on this 
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same dataset revealed an increase in accuracy for the 
‘days’ post-hoc set to nearly that seen in the validation 
and ‘seconds’ class post-hoc set (83.4% in post-hoc 
accuracy of ‘days’ class compared to the 86.9% accuracy 
observed for the ‘seconds’ class in Table II) by using 
combinations of four days worth of data in the training set 
with the independent test set being the remaining day.  
This suggests that by increasing the amount of ‘non-
stationary’ data in the training set, the ANN can learn 
patterns related to changing distributions of the 
physiological data over time.  What cannot be separated 
from this analysis, however, is the contribution of 
multiple days worth of data from the contribution of a 
larger corpus of training data (possibly on the order of a 
shorter lag in time between training and test) as accuracy 
on the remaining day increased.  Simulation of this 
condition in a between-subjects experimental design could 
help to more fully resolve that ambiguity. 

Even so, practitioners in human-machine systems 
design should begin to look toward these results as 
encouraging, as an accuracy of 83.4% can be of 
tremendous use in augmented performance paradigms 
where the user’s (successfully) assessed cognitive state is 
mitigated to improve performance.  As in [10], successful 
assessment of cognitive workload as a state, paired with 
mitigation implemented during periods of high cognitive 
demand, results in a 50% performance increase in a 
simulated unmanned aerial vehicle (UAV) control task.  
Given these results, it is reasonable to expect that robust 
machine learning approaches can be designed to combat 
non-stationarity in physiological data, thus allowing 
practitioners to effectively implement methods for 
assuring optimal cognitive state in augmented human-
machine systems. 
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