
  

  

Abstract—This manuscript proposes a particle swarm-based 
feature extraction to monitors brain activity with the goal of 
identifying correlate cognitive states and intensity of a task. 
This in turn would allow us to develop a pattern recognition 
system that will classify such cognitive states and thus to 
redistribute the workload to other subjects. In this abstract, we 
present a recognition system that employ multiple features 
from different domains, a feature selection method using a 
Particle Swarm Optimization (PSO) search algorithm while the 
classification is provided using a k-nearest neighbor. Through 
this approach, we are able to achieve an averaged classification 
accuracy of 90.25% on held-out, cross-validated data among 
the eight subjects. 

I. INTRODUCTION 
UMAN attention and productivity can be affected by the 
complexity of a particular task due to factors such as 

fatigue, stress, etc. causing errors, miscalculations, 
downturn, and in some cases accidents. A simple solution to 
address the problem may be to monitor the physiological 
patterns of the subjects using, for example, a test or medical 
questionnaire but it will require the implementation of a 
schedule which makes such an approach unpractical. A more 
practical approach involve the use of a brain-computer 
interface-like system, which will monitor the 
electroencephalographic signals of the brain, among other 
sensors, and by means of pattern recognition algorithm to 
detect the cognitive state of the subject. Such an automatized 
system will allow the redistribution of workload of a 
particular task to other subjects based on the cognitive state 
of the subject. 

Brain-computer interfaces have become more prominent 
during the last decade due to multiple factors, including 
better and less expensive sensors, lower power and faster 
processors, and the availability of sophisticated machine 
learning techniques.  Their development is largely driven by 
biomedical applications, such as the need to provide a way 
for patients suffering from cerebromedullospinal 
disconnection (“locked-in syndrome”) to communicate and 
interact with the environment.  However, as BCI technology 
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has matured, military and consumer applications have 
emerged, as well.   
  Most current BCI systems are enabled by machine 
learning algorithms that identify (based on a set of “training 
data”) specific spatiotemporal features of neural activity that 
are reliably correlated with specific behavioral or cognitive 
outcomes.  There are three main aspects of such a machine 
learning system: (1) signal conditioning, (2) feature 
extraction and (3) pattern recognition or classification.  For 
most problems, the preprocessing and classification remains 
the same from subject to subject.  However, the 
discriminative features are not necessarily conserved across 
subjects, depending on the specific neural phenomenon 
under study and the way in which it is encoded in the 
subjects’ brains.   
 Feature extraction is often considered the most important 
stage in a pattern recognition system because an optimal 
configuration of the feature space—feature selection, 
transformation, and selection of parameters involved—can 
provide data in a representation that makes the classifier’s 
task straightforward [1]. In the case of cognitive state 
detection system, we have available 19-channel EEG, 
VEOG, and HEOG (included for artifact removal) 
recordings from which we may extract many features (i.e., 
mathematical metrics). We must choose which EEG 
channels to use (because some EEG channels are more 
informative than others), what kind of transformation to 
apply to the data (e.g., linear, non-linear), whether to 
compute time- or frequency-based features, and many other 
factors. It is computationally infeasible to evaluate all 
combinations of features even once, and to ensure optimal 
performance, it is desirable to identify the best combination 
of features for each subject.  We therefore employ a Particle 
Swarm Optimization (PSO) technique to efficiently search 
the parameter space and identify an effective set of features 
for each subject.  

II. METHODOLOGY 

A. Data Collection 
The data was provided by the Air Force Research Lab 

and collected while study participants completed the Multi-
Attribute Task Battery [2]. There were 8 participants in total, 
and each participant completed 3 trials on 5 separate days. In 
each trial, segments of task difficulty intended to produce 
low, medium and high workload were presented in a random 
order, with 'transition' time between workload segments. 
This transition time was 60 seconds between low/high and 
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high/low segments and 30 seconds between low/medium, 
medium/low, medium/high, and high/medium segments. 
Each segment was 5 minutes in length. The five days of data 
collection for each participant were not sequential, but 
spread out over the course of one month. Starting with the 
first day (‘Day 1’), the next data collection day was the 
following day (‘Day 2’), one week later (‘Day 3’), three 
weeks later (‘Day 4’) and four weeks (approximately one 
month) later (‘Day 5’).  
 All 21 of these data channels were collected using the 
MICROAMPS system from SAM Technologies, Inc. 
MICROAMPS has default high-pass and low-pass filters at 
0.05 [Hz] and 100 [Hz], respectively, and a sampling rate of 
256 [Hz]. Aside from these filters, no other processing has 
been done on this dataset. All values are in [μV]. The 19 
EEG channels were referenced to a single (left) mastoid. 
VEOG was a bipolar channel with electrodes placed above 
and below the left eye. HEOG was also a bipolar channel 
with electrodes placed outside the outer canthus of each eye. 
All electrodes were tin cup electrodes (9 [mm]). Impedances 
for the EEG channels were all below [5 kΩ], and 
impedances for the VEOG and HEOG channels were all 
below [15 kΩ]. 

B. Features and Feature Extraction 
After splitting the training set into two-second long non-

overlapping windows, we extracted several features for each 
of the 21 channels. Fig. 1 depicts the average signals for low 
workload and high workload conditions for one of the 
subjects. Features were selected from different mathematical 
and physical domains such as time, frequency statistics, and 

information theory. The set of features are: energy, 
nonlinear energy, curvelength, mean, standard deviation, 
skewness, kurtosis, Renyi entropy, Shannon entropy, short-
term Lyapunov exponent, Katz fractal dimension, and 
summation, periodo, peak frequency, and mean frequency.  

Evaluating fifteen features in nineteen channels creates a 
feature space of 285 dimensions. Most classifiers, however, 
perform poorly with a large number of features because of 
the so-called curse of dimensionality [1]. To address this 
problem, we implemented a feature selection stage using 
PSO [3]. Table I shows the mathematical expressions for 
some selected features.  
 

C. Feature Selection and Classification 
To train the classifier and assess the performance of each 

feature set, we calculate the misclassification error (i.e. the 
fitness function) using leave-one-out validation with a k-
nearest neighbor classifier.  This procedure is performed on 
half of the data for each subject, with the other half held out 
for testing.  The parameters for the PSO were: 100 
generations, 100 particle population size, and length of the 
particle 10 (i.e., maximum number of features).  We also 
implemented a linear descending acceleration coefficient, w, 
that goes from 0.9 to 0.4.  The acceleration coefficients were 
set to c1 = c2 = , Xmax was set to [1, 285], and Vmax to [0, 
5]. The parameter k for the classifier was set to 5.  

Classification was performed both on training/testing data 
(ground-truth is available) and on continuous data (ground-
truth not available).  For continuous classification, we used a 
two-second long window (512 pts.) and slid it by 1 second 

Fig. 1. Average signal for each channel from dataset 1 depicting the high workload (red) and low workload (blue). Channel O2 is not presented. 
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(256 pts.). Each subject contains eighteen testing segments 
with duration of 2.5 minutes, half of them (8 records) 
containing mostly low workload conditions and the other 
half containing high workload condition 

III. RESULTS 
To assess the discriminative power of each feature alone, 

we calculated the area under the curve (AUC) of the receiver 
operating characteristic (ROC).  Table II shows the top five 
features and channels for each subject (1 to 8), respectively 
(for these results we also included HEOG and VEOG). Few 
observations can be made from the table. Although, the 
AUCs values range from 0.75 to 0.96 (in practice considered 
satisfactory values), the best feature yielded different AUCs 
for different subjects. Although some common channels 
were found among some subjects such as F3, F4, and T4, the 
subjects seem to have particular signal patterns in different 
channels. As for the features, some common features could 
be observed such as peak frequency, Shannon entropy and 
some features from the statistical domain were selected, 
however, no global feature was noticed. 

  
TABLE II 

 AUC VALUES FOR TOP-FIVE FEATURES-CHANNELS FOR EACH SUBJECT 
FEATURE CHANNEL AUC 

Subject 1 
Lyapunov Exp. F3 0.9199 

Curvelength O2 0.9032 
Standard Dev. F4 0.8799 
Curvelength O1 0.8799 

Peak Frequency F4 0.8785 
Subject 2 

Peak Frequency F3 0.9213 
Kurtosis T5 0.7726 
Kurtosis FP1 0.7725 
Periodo CZ 0.7653 

Peak Frequency FP2 0.7552 
 
 

Subject 3 
Peak Frequency T4 0.9624 

Periodo T4 0.9616 
Peak Frequency HEOG 0.9615 
Standard Dev. F4 0.9542 
Curvelength O2 0.9541 

Subject 4 
Peak Frequency F3 0.8927 
Peak Frequency HEOG 0.8241 

Periodo T4 0.8237 
Shannon Entropy C4 0.8195 
Shannon Entropy F3 0.8179 

Subject 5 
Katz Fractal Dim. FP1 0.9609 
Katz Fractal Dim. T5 0.9394 
Shannon Entropy F3 0.8816 

Skewness P3 0.8747 
Katz Fractal Dim. HEOG 0.8655 

Subject 6 
Peak Frequency F3 0.8590 
Mean Frequency C4 0.8489 
Mean Frequency F3 0.8349 
Peak Frequency P3 0.8339 

Summation O1 0.8046 
Subject 7 

Shannon Entropy C4 0.8804 
Shannon Entropy F7 0.8633 

Kurtosis T5 0.8622 
Shannon Entropy F3 0.8422 
Shannon Entropy FP2 0.8331 

Subject 8 
Skewness HEOG 0.9309 

Standard Dev. T4 0.9286 
Standard Dev. F4 0.8991 
Curvelength O2 0.8976 

Renyi Entropy F7 0.8374 
 
 

TABLE III 
STATISTICS FOR EACH SUBJECT FOR TESTING DATA 
Statistics Testing 

Subject 1 
Sensitivity (High) 90.99% 
Specificity (Low) 90.18% 

False Positive Rate 9.82% 
False Negative Rate 9.01% 
Positive Pred. Value 90.18% 

Classification Accuracy 90.58 +/- 29.27% 
Subject 2 

Sensitivity (High) 87.50% 
Specificity (Low)  62.16% 

False Positive Rate  37.84% 
False Negative Rate  12.50% 
Positive Pred. Value  70.00% 

Classification Accuracy  74.89 +/- 43.46% 
Subject 3 

Sensitivity (High) 99.10% 
Specificity (Low)  99.11% 

False Positive Rate  0.89% 
False Negative Rate  0.90% 
Positive Pred. Value  99.10% 

Classification Accuracy  99.10 +/- 9.45% 
 
 
 

TABLE I 
MATHEMATICAL EQUATIONS FOR FEW SELECTED FEATURES 

Feature Equation 
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Subject 4 

Sensitivity (High) 85.59% 
Specificity (Low)  83.78% 

False Positive Rate  16.22% 
False Negative Rate  14.41% 
Positive Pred. Value  84.07% 

Classification Accuracy  84.68 +/- 36.09% 
Subject 5 

Sensitivity (High)  97.32% 
Specificity (Low)  91.89% 

False Positive Rate  8.11% 
False Negative Rate  2.68% 
Positive Pred. Value  92.37% 

Classification Accuracy  94.62 +/- 22.62% 
Subject 6 

Sensitivity (High) 90.09% 
Specificity (Low)  89.29% 

False Positive Rate  10.71% 
False Negative Rate  9.91% 
Positive Pred. Value  89.29% 

Classification Accuracy  89.69 +/- 30.48% 
Subject 7 

Sensitivity (High) 82.88% 
Specificity (Low)  88.29% 

False Positive Rate  11.71% 
False Negative Rate  17.12% 
Positive Pred. Value  87.62% 

Classification Accuracy  85.59 +/- 35.20% 
Subject 8 

Sensitivity (High) 94.59% 
Specificity (Low)  91.07% 

False Positive Rate  8.93% 
False Negative Rate  5.41% 
Positive Pred. Value  91.30% 

Classification Accuracy  92.83 +/- 25.87% 
 

Table II presents the results achieved for each subject 
using the halt of the data separated for testing purposes. For 
this study, true positives were associated with detecting high 
workload. As mentioned before, classification was 
performed using LOO. It can be noticed that acceptable 
classification accuracies were achieved for all subjects with 
subject 2 having the lowest performance which does not 
come as a surprise given that that particular subject has just 
one feature with an AUC score over 0.90 (see Table II) and 
such feature was not selected by PSO during the training 
stage (among the ten selected, it selected kurtosis on channel 
T5).  

 We evaluated our features in continuous data for each 
of the eighteen testing segments for subject. Table IV shows 
the average classification accuracy achieved for each subject 
on each category (i.e., low and high workload). We averaged 
the results for low and high workload conditions. It can be 
noticed that while the classifier is achieving an acceptable 
accuracy for low workload conditions, it performed poorly 
when confronted with high workload conditions. Although 
we achieved good classification during the training testing 
stage for the high workload conditions, we did not include 

transition periods and medium workload periods in the 
training stage. It may be beneficial to also include this data 
into the selection of features and training stage. Such data 
might be crucial in detecting the high workload activity. 
Also, we are using conventional metrics that are not 
necessarily optimized for these signals. Using algorithms to 
construct features directly from the raw data and combining 
multiple channels in a way that a multivariable and 
customized feature can be crafted. 
 

TABLE IV 
 RESULTS FOR EACH SUBJECT ON CONTINUOUS CLASSIFICATION LOW 

AND HIGH WORKLOADS 
Subject Low High 

1 73.37 +/- 6.40% 23.21 +/- 7.95% 
2 90.94 +/- 4.39% 13.76 +/- 4.50% 
3 85.67 +/- 3.10% 14.38 +/- 5.63 % 
4 90.91 +/- 5.02% 6.74 +/- 3.41% 
5 88.47 +/- 5.13% 10.54 +/- 2.66% 
6 79.83 +/- 7.05% 21.35 +/- 5.02% 
7 79.88 +/- 5.78% 15.60 +/- 5.86% 
8 84.52 +/- 3.99% 15.46+/-3.44% 

 

IV. CONCLUSIONS 
As brain-computer interface systems become more 
pervasive, there is a pressing need for better signal 
processing and feature extraction methods that can overcome 
the limitations presented by the current sensor technology. In 
this paper we present the importance of feature selection for 
a BCI system to detect cognitive states using EEG signals, 
among other sensors. Evaluation on continuous EEG data 
provided an idea of the difficulty of the problem. However, 
better results may be achieved if we implemented a more 
non-linear algorithm for feature extraction and construction 
of features. Algorithms such as PSO-trained neural networks 
and genetic programming can be implemented to construct 
nonlinear features—using the features presented in this 
paper—that provide more discriminative power, reduces the 
computational cost, and may be personalized to particular 
subject. To exploit the raw data, a genetic programming can 
be used to design features which may not have a physical 
meaning but are optimized for the patterns underlying in the 
data. 
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