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Abstract— A matching pursuit (MP) based algorithm, called
source deflated matching pursuit (SDMP), is proposed for
locating sources of brain activity. By iteratively deflating the
contribution of identified sources to multiple measurement
vectors (MMVs), the SDMP algorithm transforms the original
multi-basis-vector/matrix selection problem into a single-basis-
vector/matrix selection problem, which not only mitigates the
residual-source interference but also remedies the intrinsic bias
when locating deep sources. The robustness of the proposed
algorithm to two bias factors is verified through simulations.

I. INTRODUCTION

Source reconstruction using multi-sensor measurements of

electroencephalography (EEG) or magnetoencephalography

(MEG) arising from current dipoles located throughout the

brain has been studied for decades. It not only retains

the high-temporal-resolution characteristic of EEG/MEG but

also improves the resolution of reconstructed spatial spec-

tra. Generally, the reconstruction process involves a high

dimensional inverse problem that has an infinite number of

solutions; to have an appropriate solution, constraints must

be incorporated into the problem.

The most well-known constraint in the literature is the

“minimum norm” constraint [1], that finds the solution

vectors that best match the measurements with the smallest

l2 norm. However, this approach usually produces overly dis-

tributed or smeared sources in the reconstruction region that

diverge from the sparse and highly localized nature of brain

activity. As a result, researchers have resorted to a “sparse-

ness” constraint [2], [3]. By providing an over-complete

dictionary for representing solution vectors, a reconstruction

problem with the sparseness constraint will search for a

solution vector that not only matches the measurements, but

also has as few non-zero entries as possible. This process is

also referred to as subspace/basis selection in the literature

and typically requires a combinatorial search [4], [3].

To avoid an exhaustive search for optimal solutions, some

low-complexity algorithms have been proposed. Matching

pursuit (MP) search techniques [5], [6], [7] sequentially

rather than simultaneously add basis vectors into the set

for representing measurements and then remove their con-

tribution from the measurements. These approaches signif-

icantly reduce the search effort since the original multi-
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basis-vector/matrix selection problem is replaced with sev-

eral smaller problems where only a basis vector/matrix

that best matches the residual measurements is sought for.

Diversity measure minimization techniques on the other hand

select all the vectors/matrices of the dictionary initially and

eliminate the vectors/matrices one-by-one until a requisite

number remains [3], [5]. FOCal Underdetermined System

Solver (FOCUSS) [2] is a famous example belonging to this

algorithm category, which uses a weighted minimum norm

approach for sequentially reinforcing strong sources and

reducing weak ones and ultimately leads to a sparse solution.

Although it is sensitive to noise and highly dependent on

the initial estimates [1], there exist some extended FOCUSS

algorithms based on other diversity measures (e.g., the lp
norm with p ≤ 1) discussed in [8], [3], [5], which can be used

for basis selection problems when the signal-to-noise ratio

(SNR) is low. However, the cost functions of the diversity

measure minimization techniques might not be continuous

and a need for a more tractable cost function or a more

sophisicated minimization technique is inevitable.

In this paper, we consider application of the MP algo-

rithms to the inverse problem with emphasis on locating

sources of EEG or MEG brain activity. When implementing

the algorithms, we utilize multiple measurement vectors

(MMVs) which arise naturally when measuring stimulus-

evoked activity [7], [9]. Two factors that will bias the position

estimates are presented and a novel MP-based algorithm that

can cope with the these bias factors is proposed later.

II. DATA MODEL AND ASSUMPTIONS

A. Data Model

Although from a mathematical standpoint, the techniques

we develop are applicable to both EEG and MEG source

localization, we develop the model here only for the EEG

case. In the standard data model for EEG source localization

in the brain, the cortex or brain region of interest is divided

into n small disjoint candidate locations, and sources in

activated locations are modeled as equivalent current dipoles

[10], [11]. The linear forward model relating the moment

vector s(t) ∈ R
3n×1, which is the stack of dipole moments at

all candidate regions, and the m-sensor array measurements

x(t) ∈ R
m×1 at time instant t can be written as

x(t) = Gs(t) + n(t), (1)

where G = [G(r1), . . . ,G(rn)] ∈ R
m×3n is the basis

matrix that is comprised of the lead field matrices (LFMs) of

all n candidate regions, rk ∈ R
3×1 represents the position of
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the kth candidate region and n(t) ∈ R
m×1 is the background

electronic/neural noise. The LFM G(r) associated with each

location r has three columns, each corresponding to the array

response for the dipole moment along the three coordinate

axes. Due to the sparse and highly localized nature of the

brain activity, most components of the moment vector s(t)
are zero.

As mentioned above, the LFM G(rk) is decomposed into

three parts (cf. two components for MEG applications), each

due to a separate dipole orientation component:

G(rk) = [gx(rk) gy(rk) gz(rk)], (2)

where gx(rk), gy(rk) and gz(rk) are the m × 1 lead field

vectors (LFVs) that result from unit amplitude sources at

rk and oriented in the x, y and z directions respectively.

Hence, the number of columns of the basis matrix G

and the number of moment components are 3 times the

number of candidate regions. In practice, these LFV’s can be

derived from multilayer spherical head models [11], [12] or

based on realistic head measurements taken from computed

tomography or magnetic resonance imaging data [13].

Once multiple measurement vectors (MMVs) are provided

(i.e. t = 1, . . . , T with T > 1), the MMV data model can be

succinctly written as

X = GS + N, (3)

where X = [x(1), . . . ,x(T )], and S,N are defined similarly.

B. Assumptions

We adopt assumptions similar to those made in [7]:

A1 The moment vectors s(t) for t = 1, . . . , T , are

sparse, i.e., most of the entries are zero.

A2 The moment vectors s(t) for t = 1, . . . , T , have

the same sparsity profile so that the indices of the

nonzero entries are independent of t.

III. EXISTING MATCHING PURSUIT BASED

TECHNIQUES AND BIAS FACTORS

The highly localized nature of the evoked brain activity re-

sults in highly sparse moment vectors once an over-complete

basis matrix is adopted. It means that only limited columns of

the basis matrix G will take effect on the measurements. In

general, optimal selection of the lead field matrices that best

represent the measurements requires a combinatorial search.

However, the cost of such a search may be prohibitive even

for a moderate number of sources [3].

By sequentially rather than simultaneously selecting basis

vectors into the set for representing the measurement matrix

and removing their contribution once determined, MP-based

search techniques such as basic matching pursuit (BMP) and

order recursive matching pursuit (ORMP) (refer to e.g. [7]

for details) can substantially reduce the search effort. This

is because they replace the original multi-basis-vector/matrix

selection problem with several smaller problems where only

a basis vector/matrix that best matches the residual measure-

ments is sought for.

There are two factors that bias the position estimates

when using BMP and ORMP for souorce localization. The

residual-source interference problem [14] occurs whenever

more than one candidate region is simultaneously activated.

If r activated regions are present in response to some stimuli,

the spatial spectrum generated by the cost function of BMP

or ORMP at the pth iteration will ideally have a single global

maximum and at most r − p − 1 local maxima, and the

candidate region corresponding to the global maximum is

the target to be selected. However, because of the spatial

interferences among sources, the formation of the global

maximum is not solely due to the LFM of some specific

candidate region; instead, it might be a “compromise” be-

tween all r − p residual sources, which will lead to biased

estimates. This problem is even more apparent when the

distance between sources is small. The presence of sources

deep within the brain is the other bias factor, which causes

the search techniques to favor candidate regions closest to

the sensors. This is because the potential fields rapidly fall

off with distance from a dipole source, and a source located

closer to the sensors can often be received with higher SNR

even if its dipole moment is weaker than others farther away

from the sensors [2].

IV. SOURCE DEFLATED MATCHING PURSUIT

(SDMP)

Location indices provided by the BMP or ORMP algo-

rithms normally deviate from the actual source positions

due mostly to interference among residual sources. When

there exists only one activated location, the discrepancy is

largely reduced even for the localization of a deep source.

Thus, if the original multi-source search can be replaced by

a series of unbiased single-source searches, the influence of

residual-source interference on localization accuracy can be

eliminated. Provided with a set of biased indices obtained

either by BMP or ORMP, we assume that all other location

indices except the one for which we are conducting a ‘fine”

search for are accurate. We then suppress or “project out”

the contribution of these other sources before conducting the

fine search. By doing so, there will ideally be only one

source left in the bias-suppressed measurements, and the

original problem will reduce to having only one source to

locate. A similar idea is used in the alternating projection

(AP) algorithm for computing the exact maximum likelihood

estimates for the directions of multiple sources in passive

sensor arrays [15] and was also used in the beamforming

(BF) method for multiple dipole sources localization for

MEG [16].

The proposed source deflated matching pursuit (SDMP)

algorithm is summarized as follows:

Initialization Stage

Use the BMP or ORMP algorithm to obtain an initial index
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set of source locations:

I = {k0
1, k

0
2, . . . , k

0
r}.

Deflation Stage

Given Gk, X,

1: for i = 1 to Nmax do

2: for p = 1 to r do

3: Si
p = [Gki

1
. . .Gki

p−1
Gk

i−1
p+1

. . .Gk
i−1
r

];

4: Id = {ki
1 . . . k

i
p−1 k

i−1
p+1 . . . k

i−1
r };

5: G
(i,p)
k ← P⊥

Si
p
Gk;

6: X(i,p) ← P⊥

Si
p
X;

7: ki
p = arg maxk ‖PG

(i,p)
k

X(i,p)‖2F
for k ∈ {1, 2, . . . , n} − Id;

8: Ii
p = {ki

1 . . . k
i
p−1 k

i
p k

i−1
p+1 . . . k

i−1
r }.

9: end for

10: end for

Nmax is the maximum allowable number of iterations for the

fine search and r is the number of sources we want to locate.

The projection matrix P⊥

Si
p

= I − Si
p[(S

i
p)

T Si
p]

−1(Si
p)

T is

for suppressing the contribution of the sources at locations

other than the one for which a fine search is being conducted.

Normally, it only takes 2 to 4 iterations to reach a final result

where the location indices are no longer updated.

V. SIMULATION EXAMPLES

A. Dual-Condition Experiments and Interference Mitigation

For EEG measurements, the desired signals are very weak,

and embedded in strong, spatially correlated interference

and noise due primarily to background brain activity not

related to the activity of interest. To mitigate the interference,

experiments with dual conditions, one (control state) prior to

application of the stimulus and one (activity state) after the

stimulus are normally adopted [17]. With the implication that

both states have statistically similar noise and interference,

the control state measurements are used either to estimate

the spatial covariance matrix of the interference plus noise

for prewhitening the activity state measurements [17] or to

construct a subspace that is orthogonal to the spatially cor-

related interference that can be projected out [12]. Through

these preprocessing steps, what is left in the activity state

measurements will simply be “modified” task-related signals

and white noise.

B. Simulation Parameters

EEG simulations involving 61 electrodes from the 10-10

system [18] were conducted. The LFM’s were calculated

using the approximate method of [11], in which the head

was modeled as a multi-layer sphere with its radii and

conductivities specified in [19]. The brain surface and a

brain slice (elevation angle = 30 deg) were modeled as

a spherical shell (upper half) and a flat disk, respectively.

The shell and disk were respectively partitioned into 1279

and 676 uniformly distributed voxels as candidate locations,

with the average distance between two adjacent locations

equal to approximately 0.75 and 0.5 cm, respectively. To

generate the received moment matrix GS, the orientation

of an activated source dipole was assumed to be constant

over the data collection interval. This means that the dipole

moments sk(t) ∈ R
3×1 of a source at rk can be decom-

posed as sk(t) = ψs′k(t) with ψ ∈ R
3×1 denoting the

dipole orientation and the scalar time series s′k(t) denoting

its moment magnitude at time instant t. White noise was

added to the received moment matrix with its power being

specified by a given signal to noise ratio (SNR), defined

as ‖GS‖2F /‖N‖
2
F . We assumed that the spatially correlated

background interference had been effectively suppressed by

either prewhitening or null projection.

C. Performance Measures

To measure the performance of the algorithms, the “suc-

cess rate” and RMS position estimation error were used. For

a given source position rS and an estimated position rE , we

claim a success if ‖rS−rE‖ ≤ dth, where dth is a threshold

distance. The RMS position estimation error is defined as

LocErr =
√

1
r

∑r

n=1 ‖rS − rE‖2F .

D. Results and Discussion

Evoked response potentials (ERPs) arising from different

parts of the cerebral cortex are closely related to the brain

functions that these parts of the cortex are responsible for. For

example, the ERPs from the temporal lobes and the occipital

lobe can be connected with some auditory and visual stimuli.

In the first simulation, we try to locate these ERPs with

three MP algorithms. Sources with random orientations were

quasi-randomly placed on the brain surface (each pair of

sources was separated by at least 5 cm). The SNR was set

at 5 dB and 200 trials were separately conducted for cases

involving different numbers of sources. As shown in Figure
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Fig. 1. The influence of the number of sources on localization using three
MP algorithms. Upper: success rate with threshold dth = 1 cm. Lower:
RMS position estimation error (cm).
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Fig. 2. Deep sources on a brain slice. The influence of the number of
sources on localization using three MP algorithms. Upper: success rate with
threshold dth = 1 cm. Lower: RMS position estimation error (cm).

1, once there exists more than one source, the interference

among sources starts taking effect and the performance

degrades more and more as the number of sources increases.

However, the SDMP algorithm achieves considerably better

performance than the BMP and ORMP algorithms in all

cases.

One application of EEG source localization is in the field

of epilepsy, where it is important to localize the sources

of epileptic discharges and study their propagation patterns.

For some subjects, the epileptic seizures occur in areas deep

inside the brain [20], which causes localization to be more

challenging due to the intrinsic bias problem. In the second

simulation, the sources were randomly located on the brain

slice rather than the brain surface to mimic a case with

sources far removed from the sensors. The influence of the

number of such sources is plotted in Figure 2 for an SNR

of 5 dB. Comparing Figures 1 and 2, we find a further

degradation in the performance of both BMP and ORMP

algorithms due to the intrinsic bias. As in the first example,

when more than one source is present, the performance of

both the BMP and ORMP algorithms degrades dramatically.

However, the performance of the algorithms tends to be

“stable” when more than 2 sources present. This is due

to the fact that, although the residual source interference

further biases the position estimates obtained by both BMP

and ORMP, the sources are confined to the brain slice (a

disk) with a radius about 6.8 cm, which limits the size

of the errors compared with the first example. However,

as before, the SDMP algorithm still maintains significantly

better performance in all cases.

VI. CONCLUSIONS

We have presented a MP based search technique for

locating sources of brain activity with MMVs. The proposed

algorithm iteratively removes the contribution of identi-

fied sources so that the original multi-basis-vector/matrix

selection problem can be transformed into a single-basis-

vector/matrix selection problem, which not only mitigates

the residual-source interference but also is immune to the

intrinsic bias when locating deep sources. The influence

of both bias factors on the performance of existing MP

algorithms has been examined and the robustness of the

proposed algorithm to these factors has also been verified

through simulations.
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