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ABSTRACT

Seizure is the result of excessive electrical discharges of neu-
rons, which usually develops synchronously and happens sud-
denly in the central nervous system. Clinically, it is diffi-
cult for physician to identify neonatal seizures visually, while
EEG seizures can be recognized by the trained experts. By
extending our previous results on multichannel information
fusion, we propose an automated distributed detection system
consisting of the existing detectors and a fusion centre to de-
tect the seizure activities in the newborn EEG assuming that
the decisions of local detectors are correlated. The advantage
of this proposed technique is that it accounts for correlated
decisions of the local detectors. It has been shown that corre-
lation between local detectors can lead to severe performance
degradation if not modelled properly. Therefore our proposed
technique can potentially improve the performance of exist-
ing single and multichannel neonatal seizure detection algo-
rithms.

Index Terms— neonatal seizure detection, biomedical
signal processing

1. INTRODUCTION

A seizure is defined clinically as a paroxysmal alteration in
neurologic function, i.e., behavioural, motor, or autonomic
function. It is a result of excessive electrical discharges of
neurons, which usually develop synchronously and happen
suddenly in the central nervous system (CNS). It is critical to
recognize seizures in newborns, since they are usually related
to other significant illnesses. Seizures are also an initial sign
of neurological disease and a potential cause of brain injury
[1].

In hospitals, a physician usually orders more laboratory
tests when it is difficult to use the current test results to judge
if a surgical operation is necessary or not. Similarly, in the
seizure detection problem, multiple detectors can be used in
order to accurately determine if there are seizure activities in
the EEG or not. These multiple detectors observe the com-
mon phenomenon, the neonatal EEG, and make decisions on
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their own observations. The decisions are sent to a central
processor, named as the fusion center. In the fusion center, the
final decision is made by combining the received decisions in
some way. The phenomenon, multiple local detectors, and the
fusion center are the basic components of a distributed detec-
tion system. Usually, when the local decision rules are fixed,
the fusion center requires the perfect knowledge on the prior
information of the phenomenon and the performances of the
detectors to optimally fuse the local decisions. However, such
knowledge is not always available in real applications.

In our previous work, we proposed a blind multichannel
algorithm for a distributed detection system and applied our
previously proposed blind algorithm on multichannel infor-
mation fusion. First, we formulate the set of nonlinear equa-
tions describing the probability density function of the de-
cision vector. These equations express probabilities of par-
ticular decision vectors as functions of the unknown a priori
probabilities of the binary hypotheses and the unknown prob-
abilities of false alarm and missed detection. Then, we esti-
mate these unknowns using the maximum likelihood estima-
tor and Bahaduz-Lazarsfeld expansion of the density function
proposed in [2]. FInally we evaluate the performance of the
proposed algorithm using a real data-set.

2. SIGNAL MODEL

2.1. Local Detectors

Several neonatal EEG seizure detection algorithms exist in the
literature. In this paper we implemented the following three
algorithms that have been proposed for the neonatal seizure
detection:

Liu’s algorithm - In[3] the authors focused on the rhythmic
characteristic of neonatal EEG seizure and proposed a detec-
tion algorithm using autocorrelation analysis. Due to the peri-
odicity of EEG seizure, its autocorrelation function has more
peaks with similar periodicity of the original signal. In con-
trast, normal neonatal EEG does not have clear periodicity, so
its autocorrelation usually has irregular peaks. A scoring sys-
tem described in [3] can be used to determine the degree of
periodicity of the EEG signal quantitatively in order to iden-
tify the existences of the seizure activities.
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Fig. 1. Parallel Distributed Detection System

Gotmans’s algorithm - In [4] the authors proposed three
different seizure detection methods to detect three types of
seizures: rhythmic discharges, multiple spikes, and very slow
rhythmic discharges, respectively. In this paper, we only fo-
cus on the rhythmic discharge detection since it could iden-
tify 90% of the seizures detected by all three detection algo-
rithms. The rhythmicity of a signal can be represented in the
frequency domain by a high and narrow peak at the frequency
of that signal. Therefore, in the spectrum of the EEG segment
containing seizure activities, a large distinct peak is expected
to appear at the main frequency of EEG seizure.

Celka’s algorithm - The algorithm reviewed in this section
was proposed in [5]. They performed the singular spectrum
analysis and the information theoretic-based signal subspace
selection to examine the complexity of the EEG signal. This
detection algorithm has three main steps: Pre-processing, sin-
gular spectrum analysis, and minimum description length.

2.2. Distributed Detection System

Each of the algorithms reviewed in the previous section can be
considered as a single detector. Since the statistical properties
of neonatal EEG can vary significantly from patient to patient,
it is difficult to evaluate the performance of existing single de-
tectors since they are all based on mathematical models whose
performances change on different data sets. Thus, it moti-
vates us to combine the existing single detectors and utilize
their strengths by extending previous results on blind multi-
channel information fusion [6]. Figure 1 shows the structure
of a typical parallel distributed detection system with N de-
tectors. The role of the local detectors LDn is to make local
decision un based on their own observations yn. All the local
decisions are then sent to the fusion center, where the global
decision u0 is made based on a fusion rule in order to min-
imize the overall probability of error. In this work, we only
focus on the case of three local detectors, i.e, N = 3, unless
otherwise stated. Additional detectors can be added into the
system whenever more information is required to make final
decision. Although increasing the number of detectors has
the potential to reduce the detection error probability, it also
increases the computational cost.

2.3. Local Detectors

The local detectors LDn have their own decision rules. We
use the aforementioned three algorithms to formulate the local
decision rules.

We perform hypothesis testings (local decisions) with two
hypotheses:

H0 : The EEG signal does not contain seizure
H1 : The EEG signal contains seizure

for the local detector LDn. The local decisions un, n =
1, 2, 3, are made by

un =

{
0, the nth detector favors H0

1, the nth detector favors H1

(1)

We use P (H0) and P (H1) to denote the a priori probability
of the hypothesis H0 and H1, respectively.

A common assumption used here is the local observa-
tions yn are conditionally independent, given the unknown
hypothesis Hi, i.e., P (yj , yk|Hi) = P (yj |Hi)P (yk|Hi) for
all j ̸= k and all i.

In a more general problem, the binary hypothesis testings
could be replaced by the hypothesis testings with more hy-
potheses, i.e., M = 3.

2.4. Fusion Center

After receiving the local decisions, the fusion center makes
the global decision by applying an optimal fusion rule in or-
der to minimize the final error probability. For a binary hy-
pothesis testing problem, the error probability Pe is given by

Pe = P (H0)P (u0 = 1|H0) + P (H1)P (u0 = 0|H1) (2)

Uncorrelated Local Decisions

The authors provided the optimality criterion for N local de-
tectors in the sense of minimum error probability in [7]. We
recall it here for the case of N = 3.

u0 =

{
1, if w0 +

∑3
n=1 wn > 0

0, otherwise
(3)

where, w0 = log

(
P1

P0

)
(4)

and wn =

{
log((1− Pm

n )/P f
n ), if un = 1

log(Pm
n /(1− P f

n )), if un = 0
(5)

The probabilities of false alarm and missed detection of
the nth local detector are denoted as P f

n and Pm
n , respectively.

The optimal fusion rule tells us that the global decision u0 is
determined by the a priori probability and the detector perfor-
mances, i.e., P1, P f

n and Pm
n . However, they are all unknown

6581



in our seizure detection problem, which is usually the case in
many other real applications [8, 6]. In order to make the final
decision, we need to utilize the information available to us:
the local binary decisions un.

Suppose the decision combination {u1 = i, u2 = j and
u3 = k} is represented by ℓ = (ijk)2, where i, j, k = 0
or 1 [8]. In our system, the number of all the possible lo-
cal decision combinations is 23 and will be denoted as L in
the remainder of this paper. The joint probability of decision
{u1 = i, u2 = j and u3 = k} is also the occurrence proba-
bility of the ℓth decision combination, given by

Pℓ = Pr(u1 = i, u2 = j, u3 = k)

= P (u1 = i|H1)P (u2 = j|H1)P (u3 = k|H1)P1 (6)
+P (u1 = i|H0)P (u2 = j|H0)P (u3 = k|H0)(1− P1)

P (un = i|H1) =

{
1− Pm

n , if i = 1

Pm
n , if i = 0

(7)

P (un = i|H0) =

{
P f
n , if i = 1

1− P f
n , if i = 0

(8)

As discussed in our previous work [9], in this nonlinear
system, only seven out of eight equations are independent
since

∑
Pℓ = 1 and there are seven unknowns P1, P f

n and
Pm
n , for n = 1, 2, 3. Thus, it can be solved when Pℓ are

known. Although Pℓ is usually unavailable in practice, it
could be replaced by empirical probability defined as

Pℓ = Pr(u1 = i, u2 = j, u3 = k)

≃ number ofu1 = i, u2 = j, u3 = k

number of local decisionsNt
(9)

where Nt is the number of decisions made by one of the lo-
cal detectors. The analytical solution to the above nonlinear
equations is given in [8]. However, the usage of Eq. (9) is
limited when the number of decisions is not large enough. In
our particular case the number of seizures occurring can be
rather small and thus can yield inaccurate estimation results.
To estimate those unknown probabilities in this situation, let
us first define the random variable Xℓ to represent the num-
ber of occurrences of the ℓth decision combination. Recall Pℓ

is the corresponding occurrence probability, defined earlier in
Eq. (6). Let X = (X1, X2, . . . , XL) denote the occurrence
numbers of all eight decision combinations, which are multi-
nomially distributed with probability mass function [6]

P (X1 = x1, . . . , XL = xL|Nt) =
Nt!

x1! . . . xL!
P x1
1 . . . P xL

L (10)

and var(Xℓ) = NtPℓ(1 − Pℓ), cov(XsXℓ) = −NtPsPℓ for
s = 1, . . . , L and s ̸= ℓ.

We also defined the parameter vector p as

p = [P (H1) P
f
1 P f

2 P f
3 Pm

1 Pm
2 Pm

3 ]

Suppose zℓ is the estimate of the ℓth occurrence probabil-
ity and

zℓ = fℓ(p) + eℓ, ℓ = 1, . . . , L (11)

where eℓ is the estimation error. Now we define a vector z =
[z1 z2 . . . zL]

T , f(p) = [f1(p) f2(p) . . . fL(p)]
T , and e =

[e1 e2 . . . eL]
T . Thus, the aforementioned nonlinear system

of equations can be rewritten in the matrix format as

z = f(p) + e (12)

where z, f(p) and e are the matrices of the estimates of the
occurrence probabilities, their true values, and the estimation
error, respectively. Since the distribution of the occurrences
of the decision combinations is given by Eq. (10), we could
apply maximum likelihood estimator to find the unknown pa-
rameters which make the observed outcome most likely to
happen. It means that as long as the occurrence numbers are
known, the ML estimator gives the value of p that maximize
Equation (10).

Correlated Local Decisions

Since the existing local detectors exploit similar properties
of the EEG signal it is quite likely that the local decisions
may be statistically dependent. Consequently the overall per-
formance of the detection system can be sub-optimal if this
correlation is not properly accounted for. To this purpose we
propose to apply the algorithm proposed in [2] to multichan-
nel seizure detection in neonates.
First we observe that the aforementioned decision vector u =
[u1, u2, u3]

T is a multivariate binomial vector and hence its
probability density function can be approximated as (see [2])

p(u) = p1(u)

1 +∑
i<j

γijzizj


where we neglected 3rd order correlation coefficients and

zi =
ui − pi

sqrt(qi(1− qi))

qi = Pr(ui = 1)

p1 =
3∏

i=1

qi
ui(1− qi)

1−ui (13)

and γij are the second order correlation coefficients defined
as

γij = E(zizj)

It has been shown [2] that the data fusion rule is given by

u =

{
1 logλ > P0

P1

0 otherwise
(14)
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where

logλ =
3∑

i=1

ui

[
log

(1− Pm
i )(1− P f

i )

Pm
i P f

i

]
+

= +
3∑

i=1

log
Pm
i

(1− P f
i )

(15)

Note that unlike the case of uncorrelated decisions the
above expression includes six additional unknown parame-
ters (observe that each correlation coefficient is conditional
i.e. hypothesis dependent). To avoid the number of unknown
parameters we propose to estimate the unknown parameters
under H0 (in the absence of seizures) and then treat them as
known parameters when seizures are present. In addition dur-
ing that period we can estimate probabilities of false-alarm
as well and thus decrease the number of unknown parameters
even further.

3. EXPERIMENTAL RESULTS

To examine the applicability of the proposed algorithms we
apply them to the data set obtained in the Neonatal Unit at
McMaster’s University Hospital. The data set consists of a
single channel EEG measurements sampled at 1ms obtained
from twenty two neonates diagnosed with brain development
issued. Consequently we expected that the number of seizures
will be sufficiently large and thus sufficient for maximum
likelihood (ML) estimation. Since the aforementioned local
detectors have different window (epoch size) properties the
local decisions were properly shifted in order to be aligned in
time. In addition using spectral error criterion the data was
segmented into stationary segments so that the seizure fre-
quencies (prior probabilities) do not change significantly.

First we calculated empirical correlations in order to vali-
date our assumption that the local decisions are actually cor-
related. Consequently the mean of the Pearson correlation
coefficients in the absence of seizures was 0.45 with standard
deviation of 0.22. Similarly in the presence of seizures the
mean of the correlation coefficient was 0.68 with standard de-
viation of 0.19. As expected the correlation coefficients are
significantly higher in the presence of seizures.

For illustrational purposes in Figures 2 and 3, we illustrate
the error probabilities of the local detectors for an arbitrarily
chosen patient as a function of time (number of decisions).
Similarly, Figure 4 illustrates the overall probability of error
for a particular patient. As it can be seen from the plots by
applying the proposed information fusion algorithm we were
able to decrease the overall probability of error by 7%.
In order to evaluate the performance of the proposed algo-
rithms for all the patients in Table 1 we present average re-
sults for local detectors and proposed ML-based information
fusion detection with and without correlated decisions model.
Obviously by fusing local detectors’ decisions we achieve sig-
nificant improvement especially in terms of false positives.
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Note that Liu’s detector still offers the best performance with
respect to missed seizures. We believe that this is mainly due
to a shorter time-frame so that the weights in the fusion center
are not updated with sufficient dynamic.

4. CONCLUSIONS

In this paper, we proposed a parallel distributed detection sys-
tem for neonatal seizure detection problem using the adaptive
fusion algorithms in the presence of correlated decisions. The
advantage of this algorithms is that it does not require any a
priori probabilities of the hypotheses or the performance of

Liu Gotman Celka Uncorrelated Correlated
false seizures 0.32 0.17 0.21 0.18 0.11

missed seizures 0.04 0.29 0.27 0.06 0.04

Table 1. Average seizure detection performance
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the local detectors, which are usually unavailable in practice,
especially the biomedical applications. We then described the
parallel structure of the system which enables us to combine
heterogeneous detectors into one system, followed by intro-
ducing its components: the local detectors and the fusion cen-
tre. In practice, since the size of EEG data from the patients
may be limited we applied the blind algorithm, proposed in
our previous work [6], which uses maximum likelihood esti-
mator to estimate the unknown probabilities. Note that since
the EEG signal is non-stationary, it may require the windowed
approach and thus, the small data set may be the only option.
Since the local detectors exploit similar properties of the EEG
signals we derived the data fusion algorithm that accounts for
possible correlation between local detectors and evaluated the
performance of this algorithm on real data. The future re-
search should definitely include an effort should be made to
investigate the possibility of developing improved seizure de-
tectors as well as account for higher-order conditional corre-
lations.
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