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Abstract—The performance of EEG signal classification
methods based on Common Spatial Patterns (CSP) depends
on the operational frequency bands of the events to be
discriminated. This problem has been recently addressed by
using a sub-band decomposition of the EEG signals through
filter banks. Even though this approach has proven effective,
the performance still depends on the number of filters that
are stacked and the criteria used to determine their cutoff
frequencies. Therefore, we propose an alternative approach
based on an eigenstructure decomposition of the signals’ time-
varying autoregressive (TVAR) models. The eigen-based decom-
position of the TVAR representation allows for subject-specific
estimation of the principal time-varying frequencies, then such
principal eigencomponents can be used in the traditional CSP-
based classification. A series of simulations show that the
proposed classification scheme can achieve high classification
rates under realistic conditions, such as low signal-to-noise
ratio (SNR), a reduced number of training experiments, and a
reduced number of sensors used in the measurements.

I. INTRODUCTION

Brain-computer interfaces (BCI) based on electroen-
cephalographic (EEG) data rely on accurate classification
methods in order to use brain’s electrical activity to con-
trol computerized devices in real-time [1]. In the last few
years, many classifiers have been proposed in the literature,
some of which report excellent performance in classifying
different motor and cognitive tasks for BCI applications [2].
Frequency-domain characteristics (such as changes in the
mu, beta, or gamma rhythms) and time-varying character-
istics (such as movements-related potentials) are the most
common extracted features in BCI.
Even though the common spatial patterns (CSP) method

is not, strictly speaking, a classification but a signal enhance-
ment method, it has been used in multiple BCI applications
by itself and in combination with other processing tools.
In the CSP method, optimal spatial filters are constructed
such that each filter enhances the variance of one feature
of interest while blocking the other features [3]. CSP has
been used in many BCI applications for the discrimination
of motor imaginary tasks (see e.g., [4], [5]). However,
its performance is dependent on its operational frequency
band, then BCI systems relying on CSP-feature classification
generally yield poor accuracies when the EEG measure-
ments are either unfiltered or have been filtered with an
inappropriately selected frequency range [6]. Hence, setting
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a broad frequency range or manually selecting a subject-
specific frequency range is a common practice with the CSP
algorithm [7].
The problem of manually selecting the operational subject-

specific frequency band of the CSP has been addressed
in several ways. Two of the most recent approaches rely
on the construction of filter banks that decomposes the
EEG measurements into multiple sub-bands, then the CSP
algorithm is used on each of the sub-bands. In [6], the
construction of the sub-bands is performed by a Gabor filter
bank, while in [8] a zero-phase Chebyshev Type II infinite
impulse response filter bank is used. In both cases, the
performance of the method relies on the number of filters
that are stacked and the criteria used to determine their cutoff
frequencies and the overlapping between them (if any).
In order to avoid the use of fixed frequency bands, we

propose to substitute the frequency bank-based sub-band de-
composition by an eigenstructure decomposition. Therefore,
we present a method where the EEG signals are decomposed
by means of non-stationary time series models. Specifically,
time-varying autoregressive (TVAR) models are used to
obtain a representation of the time-frequency structure of
the EEG signals. TVAR models were first introduced in [9]
and have thereafter been partially reformulated and applied to
various fields such as seismology, geology, and economics. In
the case of EEG studies, TVAR models have been applied to
the analysis of non-stationary human seizure EEG data [10].
In this paper, the assessment of changes over time in the
TVAR models obtained from the EEG data allows for the
identification of time-varying principal frequencies (most
likely related to the physiological events of interest) from
which the most significant ones, in an eigenstructure sense,
are then used in the traditional CSP-based classification.
In Section II, we present the proposed classification

scheme, from which the basis of TVAR modeling is re-
viewed, as well as the dynamic eigenstructure decomposition
of the corresponding TVAR evolution matrix. Section II
includes a brief description of the CSP algorithm as well. In
Section III, we show the applicability of our methods through
numerical examples using simulated EEG data. Finally, in
Section IV, we discuss the results, limitations, and future
work.

II. METHODS

In this section, we describe each of the steps involved
in our proposed method for EEG signal feature extraction,
which is illustrated in Figure (1).
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Fig. 1. Proposed processing scheme.

A. TVAR decomposition

In the standard autoregressive framework, a discretely
sampled EEG signal is modeled by representing the voltage
level at time  as a linear combination of voltage levels
at times  − 1  − 2      − , (where   0 is the
maximum time lag) plus a random component (driving noise
or “innovation”). The relationship is assumed to be fixed over
time, then the coefficients defining the linear combination are
constant for the entire period of recording. In TVAR models,
those coefficients are allowed to vary over time then they can
adapt to changes evidenced in the series. In particular, such
models can respond to and adequately capture the forms of
frequency changes seen on EEG oscillations. Furthermore, if
a multichannel scheme is considered, then a TVAR approach
can be defined where each signal sample is defined versus
both its previous samples and the previous samples of other
channels [11].
Under those conditions, let us define () as the

time series resulting of the EEG measurement at sensor
 = 1 2     and at time  = 1 2     . The corre-
sponding TVAR model of order  is given by

() =

X
=1

()(− ) + () (1)

where () are the time-varying coefficients of the model,
which are often calculated using the Levinson-Wiggins-
Robinson (LWR) algorithm [12], and () represents the
noise input to channel . Then, the TVAR coefficients are

arranged into a matrix () as [13]

() =⎡⎢⎢⎢⎢⎢⎣
1() 2() · · · −1() ()
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦  (2)
Once the EEG series are modeled via TVAR models,

the focus is on exploring the time-frequency structure of
the latent processes underlying the signals using a dynamic
model decomposition based on the eigenstructure of ().
Such decomposition is given by

() =

X
=1

() +

X
=1

() (3)

where  is the number of pairs of complex characteristic
roots of the polynomial defined by the eigendecomposition
of (), and  is the number of real characteristic roots,
such that 2+ = . Each () leads to a time-domain
analysis of the time-frequency structure of () through an
exploration of their frequencies () and moduli ().
Assessment of changes over time in () and ()
are an approach to explore time-variation in spectral density
functions, and the corresponding decomposition analysis
represents a form of spectral decomposition in the time
domain [10].
In order to perform the decomposition in (3),

we used a software tool (freely available at
http://www.stat.duke.edu/research/software/west/tvar.html),
which implements the sequential updating and retrospective
smoothing algorithms for calculating the TVAR models.
In addition, this software supports computation of the
latent processes in the decomposition of the series and
the corresponding characteristic wavelengths, moduli and
amplitudes related to such processes at each time [14].
In our case, this software implementation decomposes
() into  time-series from which those with the most
significant frequency content (based on the eigenvalue
assessment of ()) can be used as input in the CSP
algorithm. The selected components are then arranged
into a spatio-temporal matrix  of size  ×  , where
 ≤  is the number of components selected from the
decomposition.

B. CSP

The normalized spatial covariance of  can be obtained
from

 =


tr{}  (4)

where tr{·} denotes the trace. Considering the case of
two-class discrimination (e.g., contra-lateral brain activity
from either left or right motor cortex), a composite spatial
covariance can be computed as  = 1 + 2, where 

is the average spatial covariance obtained from independent
trials of class  = 1 2. Furthermore,  can be factored
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as  = 

 , where  is the matrix of eigenvectors

and  is the diagonal matrix of eigenvalues arranged in
descending order. Hence, the whitening transformation

 = −12 
 (5)

will equalize the variances in the space spanned by , i.e.,
all eigenvalues of  will be equal to one. Therefore,
the transformation  =  for  = 1 2 will produce
matrices that share common eigenvectors:

if 1 = 1
 then 2 = 2

  (6)

where 1 +2 = . Therefore, if we define the projection
matrix  = () such that  contains the first
and last eigenvectors in  (which correspond to the largest
eigenvalues for each class), then the filter  will produce
feature vectors that are optimal for discriminating between
the two classes in the least square sense [4]:

 = (7)

Under these conditions, the columns of −1 become
the CSPs. Hence,  is computed by (7) and from its rows
z , for  = 1 2      , we construct the feature vector
v = [1      ]

 to be used in the classification:

 = log

⎡⎢⎢⎢⎢⎢⎣
var(z )

X
=1

var(z )

⎤⎥⎥⎥⎥⎥⎦  (8)

where var(·) denotes the variance of the vector’s elements.
III. NUMERICAL EXAMPLES

We performed a series of numerical experiments for
simulated EEG data corresponding to contra-lateral acti-
vation of either the left or right motor cortex. The data
was generated based on the method of phase-resetting [16]
whose computer implementation is freely available at
http://www.cs.bris.ac.uk/ rafal/phasereset/. Further details on
the use of this computer tool for EEG data generation can
be found in [17].
We simulated measurements for each class (left or right

brain hemisphere) using an array of  = 31 sensors, while
sampling at a frequency of 250 Hz. The data was chosen to
simulate motor-related activation of the mu rhythm, which
has been extensively examined in BCI applications [18].
Furthermore, the data was added with different levels of
uncorrelated noise in order to produce mean signal-to-noise
ratios (SNRs) of −10 and −45 dB (i.e., with high and
moderate noise conditions, respectively). Note that the SNR
is defined as the ratio (in decibels) of the Frobenious norm
of the signal data matrix to that of the noise matrix.
The process of adding noise to the simulated data was

repeated with independent noise realizations to obtain 150
trials corresponding to left-side activity and 150 trials of
right-side activity, where each trial had  = 200 time
samples. From each side, 100 trials were destined to be

classified (testing data) and 50 trials were used as training
data (i.e., to compute 1 and 2).
Under those conditions, we evaluated the performance of

the processing method described in Section II (starting with
a lowpass filter with cutoff frequency of 20 Hz) for the case
when the feature vectors in (8) were discriminated using a
Mahalanobis distance-based classifier [19] and the evaluation
was made in terms of its receiver operating characteristics
(ROC) curve. This procedure has been previously used as
a generalized evaluation framework in BCI applications
(see [20]) . Furthermore, the proposed method was compared
against the filter bank common spatial pattern (FBCSP)
method described in [8]. In order to provide an evaluation
closer to real-life conditions, we evaluated the performance
for the cases when, from the original  = 31 sensors, only
a subset of them was used. In the first case, only six sensors
were used which, according to the international 10-20 sensor
arrangement, were: C3, C4, CP3, CP4, FC3, and FC4. The
second case corresponded to ten sensors: those previously
selected plus TP7, TP8, O1, and O2.
Our results are shown in Figure (2), for the case of six

channels, and Figure (3) for the case when 10 channels
were used. It is clear that, under all conditions, the proposed
TVAR-CSP classification procedure has better performance
than the filter bank-based approach. The improvement in the
performance is more noticeable under high noise conditions
(SNR=−10 dB) where the area under the ROC curve for the
TVAR-CSP is larger than the one for the filter bank. We can
also note that increasing the number of sensors from six to
ten while maintaining the same number of training trials (K
= 50) affected the performance of both classifiers. This is due
to the fact that more data is necessary to warranty that the
matrices 1 and 2 are consistent estimates of the spatial
covariance. Nevertheless, the TVAR-CSP approach seems to
be more robust to this condition as its performance did not
decrease significantly. Finally, we have to mention that a
test for SNR=0 dB was also performed and the result was a
perfect classification for both the TVAR-CSP and the filter
bank-based approach. However, we have to remember that
the TVAR-CSP method has the advantage of not requiring
any a-priori selection of frequency bands.

IV. CONCLUDING REMARKS

We presented a classification method based on model-
ing the EEG signals through TVAR models as preliminary
step of the CSP method. Instead of directly decomposing
the EEG signals, we studied the dynamics of their corre-
sponding TVAR model coefficients using an eigenstructure
time-frequency analysis. By selecting the most significant
components and using them as input to the CSP method, we
were able to eliminate the need of selecting fixed frequency
bands as in the case of filter bank-based approaches.
We evaluated the proposed method under realistic condi-

tions, such as low SNR, a reduced numbers of trials used
for training data, and a few sensors used from the mea-
surements. Our results showed that the TVAR-CSP method
can achieve high rates of correct classification under those
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conditions, and outperformed the filter bank-based approach
when tested with realistically simulated EEG data. Future
work will include a more intensive experimentation using
real EEG data corresponding to tasks commonly used in
BCI applications. Also, in terms of the implementation,
future work will evaluate the classification performance as a
function of the position of the sensors, then optimal array of
sensors may be found for a given BCI application.
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Fig. 2. ROC curves for the EEG classification methods using six channels
under different noise conditions.
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Fig. 3. ROC curves for the EEG classification methods using ten channels
under different noise conditions.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and
T. M. Vaughan, “Brain computer interfaces for communication and
control,” Clinical Neurophysiology, vol. 113, pp. 767-791, 2002.

[2] A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, “A survey
of signal processing algorithms in brain-computer interfaces based on
electrical brain signals,” Journal of Neural Engineering, vol. 4, pp.
R32-R57, 2007.

[3] Z. J. Koles, “The quantitative extraction and topographic mapping of
the abnormal components in the clinical EEG,” Electroencephalogra-
phy and Clinical Neurophysiology, vol. 79, pp. 440-447, 1991.

[4] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imaging hand movement,” IEEE
Transactions on Rehabilitation Engineering, vol. 8, pp. 441-446, 2000.

[5] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain
computer communication,” Proceedings of the IEEE, vol. 89, no. 7,
pp. 539-550, 2001.

[6] Q. Novi, C. Guan, T. H. Dat, and P. Xue, “Sub-band common spatial
pattern (SBCSP) for brain-computer interface,” in 3rd International
IEEE/EMBS Conference on Neural Engineering, 2007, pp. 204-207.

[7] G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and
K. R. Muller, “Combined optimization of spatial and temporal filters
for improving brain-computer interfacing,” IEEE Transactions on
Biomedical Engineering, vol. 53 no. 11, pp. 2274-2281, 2006.

[8] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank
common spatial pattern (FBCSP) in brain-computer interface,” in IEEE
International Joint Conference on Neural Networks, 2008, pp. 2390-
2397.

[9] T. S. Rao, “The fitting of non-stationary signals,” Journal of the Royal
Statistical Society, vol. B32, pp. 312-322, 1970.

[10] A. D. Krystal, R. Prado, and M. West, “New methods of time series
analysis of non-stationary EEG data: eigenstructure decompositions of
time varying autoregressions,” Clinical Neurophysiology, vol. 110, pp.
2197-2206, 1999.

[11] S. Sanei and J. A. Chambers, EEG Signal Processing, John Wiley &
Sons, Ltd., New Jersey, 2007.

[12] M. Morf, A. Vieria, D. Lee, and T. Kailath, “Recursive multichannel
maximum entropy spectral estimation,” IEEE Transactions on Geo-
science Electronics, vol. 16, pp. 85-94, 1978.

[13] R. Prado and M. West, “Exploratory modelling of multiple non-
stationary time series: latent process structure and decompositions,”
in Modelling longitudinal and spatially correlated data, Springer Ed.,
New York, 1997.

[14] R. Prado, “Latent structure in non-stationary time series,” PhD Thesis,
Duke University, Durham, NC, 1998.

[15] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. -R. Müller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Processing Magazine, vol. 25, no. 1, pp. 41-56, 2008.
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