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Abstract— As an effort to build an automated and objective
system for pathologic image analysis, we present, in this paper,
a computerized image processing method for identifying nuclei,
a basic biological unit of diagnostic utility, in microscopy images
of glioma tissue samples. The complete analysis includes mul-
tiple processing steps, involving mode detection with color and
spatial information for pixel clustering, background normaliza-
tion leveraging morphological operations, boundary refinement
with deformable models, and clumped nuclei separation using
watershed. In aggregate, our validation dataset includes 220
nuclei from 11 distinct tissue regions selected at random by an

experienced neuropathologist. Computerized nuclei detection
results are in good concordance with human markups by both
visual appraisement and quantitative measures. We compare
the performance of the proposed analysis algorithm with that of
CellProfiler, a classical analysis software for cell image process,
and present the superiority of our method to CellProfiler.

I. INTRODUCTION

Thanks to the rapid advancements in high-speed scanners

and whole-slide virtual microscopy techniques, computer-

based microscopy image analysis has emerged as a valuable

technique in biomedical investigations [1]. In this paper,

driven by the use case of glioma diagnosis, we propose

an image analysis method for identifying nuclei, a funda-

mental histological feature used for pathologic diagnosis,

in digital images of glioma tissue samples. Diffuse gliomas

are the most common brain cancers in the central nervous

system and can be broadly categorized into three classes:

astrocytoma, oligodendroglioma, and mixed oligoastrocy-

toma [2]. As one essential task in histopathologic analysis

of gliomas, recognition of astrocytic from oligodendroglial

differentiation remains a challenging issue even for the most

experienced neuropathologists [3]. Although the classifying

criteria has been carefully described in many training books,

high inter-observer variability in classifying diffuse gliomas

persists due in large part to the subjective natures of these

classification criteria. As the first processing step towards

this goal, a robust and accurate approach for identifying

nuclei with salient discriminating information is, therefore, of

prime importance. Although, in literature [4], [5], a rich set

of nuclei segmentation methods has been developed, almost

none of them is fully sufficient to handle microscopy images

where an enormous number of objects of interest may exist

in various forms with large variations.
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In this paper, we present a microscopy image analysis

framework that strengthens human reviewing processes with

computer image analysis algorithms for recognizing nuclei

in diffuse glioma slides. The proposed method is compared

with CellProfiler [6], a popular open-source software for cell

image process, and reaches better performances.

II. NUCLEUS IDENTIFICATION ANALYSIS

Large variations in nuclear shape and appearance make an

accurate segmentation challenging. To address this issue, we

propose a complete and efficient segmentation pipeline that

accommodates nuclei of distinct characteristics.

A. Choice of Color Space

To obtain a semantically meaningful segmentation result,

we first need to find a good color space to represent features

of individual pixels where perceived color differences can

be measured in terms of the Euclidean distance metric.

Two color spaces designed specifically for the approximate

preservation of color perceptual uniformity are named as

L∗u∗v∗ and L∗a∗b∗. As there is no clear distinction between

the use of L∗u∗v∗ and L∗a∗b∗, we prefer using L∗u∗v∗ due

to the linear mapping property [7].

B. Initial Pixel Grouping with MSCP

In our study, we used Mean Shift Clustering Procedure

(MSCP), a nonparametric clustering process closely related

to density estimation, as an initial processing step to seg-

ment images by clustering features associated with image

pixels/super-pixels in a feature space. Generally speaking, the

overall goal of MSCP is to detect unknown number of modes

(local maxima) of an unknown empirical probability density

function in a feature space [7]. The identified modes of the

feature density distribution can then be used to structure

clusters of data nearby.

Assuming we have N data points xi, i = 1,2, . . . ,N in

a m-dimensional space Rm, the probability density can be

estimated by a multivariate kernel density estimator:

f̂ (x) =
α

N

N

∑
i=1

|H|−
1
2 K

(∥∥∥H− 1
2 (x− xi)

∥∥∥
2
)

(1)

s.t.

∫

x

αK
(
‖x‖2

)
dx = 1, where α > 0

where H is a m × m positive definite bandwidth matrix,

and K(x) is an unnormalized kernel function [0,∞) → R,

e.g Epanechnikov kernel or multivariate normal kernel. To

show why mean shift procedure can successfully detect those

modes in the feature space, we need to study its relationship
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with the density gradient estimator. From (1) , we can get

the density gradient estimator and manipulate its form in the

following way:
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.

To keep the complexity to a minimum level, the bandwidth

matrix H is often defined to be diagonal or even proportional

to the identity matrix in practice. When H = h2I, with h

representing the resolution parameter, the density gradient

estimator becomes:

∇ f̂ (x) = β (x)~v(x), where ~v(x) =
N

∑
i=1

wixi − x, β (x) > 0 (3)

In (3), it is noticeable that the direction of~v(x) is the same

to that of the density gradient estimator, i.e. ∇ f̂ (x) ∝~v(x), as

H is positive definite and K′ < 0,∀x. As the mean shift vector

is identical to the density gradient estimator when H = r2I,

it always points toward the direction in which the density

estimate has the maximum increase. Further, we can use (3)

to update density mode locations in the feature space:

x(t + 1) = x(t)+ ∇ f̂ (x(t)) = x(t)+ β (x(t))~v(x(t))

= [1−β (x(t))]x(t)+ β (x(t))
N

∑
i=1

wi(x(t))xi (4)

By repeated execution of (4), we are able to find and

follow the greatest ascending path in the feature density

surface continuously until this process converges to a station-

ary point, i.e. a local maxima or mode of estimated feature

density, where the estimated gradient is zero.

As color feature based clustering methods do not take into

account the spatial information for segmentation, the result-

ing outputs may have disjoint region components that should

have been considered as unified objects. Consequently, it is

crucial to introduce spatial constraints to this feature-based

clustering process. In our analysis, we use a multivariate

kernel density estimator with a combination of a color- and

a spatial-based kernel defined in a product form [7]:

f̂ (x) =
α̂

N

N

∑
i=1

K(‖H
− 1

2
c (xc − xc

i )‖
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− 1
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s (xs − xs
i )‖
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where α̂ is the normalization constant; Hc = r2
c I and Hs = r2

s I

are bandwidth matrices associated with the color features

and spatial coordinates. Additionally, each data point now

(a) (b)

Fig. 1. Example of mean shift clustering procedure with a multiplicative
color-space kernel;(a) Original microscopy image of glioma; (b) MSCP
segmentation result.

consists of two component: color features and spatial coor-

dinates, i.e. xi = (xc
i ;xs

i ),∀i.

In Fig. 1, we demonstrate a segmentation example where

the original microscopy image in Fig. 1(a) is first converted

to the L∗u∗v∗ color space, followed by MSCP with rc = 6.5

and rs = 7, and finally transformed back to the RGB color

space for visual presentation in Fig. 1(b). It is noticeable

from the result, MSCP in conjunction with the use of color-

space joint kernel can well recognize image sub-regions with

large color, texture and intensity heterogeneities and group

them as single unified image objects.

C. Background Normalization

Although images can be partitioned into meaningful re-

gions using MSCP, identification of nuclear regions still re-

mains a problem. One effective solution to this challenge is to

introduce the use of morphological reconstruction operation

to locally “normalize” image background against which true

nuclei partitions would be readily captured. Morphological

reconstruction is a useful operation in mathematical morphol-

ogy that includes a broad set of image processing operations

based on shapes [8]. Two image morphological components,

namely marker Φ and mask Ψ image, are involved in a

morphological reconstruction operation, which can be written

down as follows:

R
χρ

Φ (Ψ) = χn∗

(ρ ,Ψ)(Φ) (6)

where χn
(ρ ,Ψ)(Φ) is a function recursively defined as:

χn
(ρ ,Ψ)(Φ) =

{
min

(
χn−1

(ρ ,Ψ)
(Φ)⊕ρ ,Ψ

)
, n > 0

Φ, n = 0
(7)

In (6), n∗ is the smallest positive number such that

χn∗

(ρ ,Ψ)(Φ) = χn∗+1
(ρ ,Ψ)

(Φ); ρ represents the structural element

with which marker image Φ is recursively dilated with.

In addition, ⊕ is a fundamental morphological operations,

known as dilation. With this morphological operation, the

state of any given pixel in the output image is simply

determined by applying the “max” rule to the corresponding

pixel and its neighbors in the input image.

As depicted in (6) and (7), the morphological recon-

struction is an iterative process where the intensity peaks

in the marker image get spread out and suppressed by

the mask image repetitively. The reconstructed signal only

differs from the mask at places where peaks reside, which
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(a) (b) (c) (d)

Fig. 2. An example of morphological reconstruction result is presented:
(a) Mask image Ψ converted from color segmented image in Fig. 1(b); (b)

Marker image Φ; (c) Reconstructed image R
χρ

Φ (Ψ); (d) Difference image
δ (Φ,Ψ,ρ).

is a very valuable property of morphological reconstruction

operation. When subtracting the reconstructed image R
χρ

Φ (Ψ)
from the mask image Ψ, the difference image δ (Φ,Ψ,ρ) =
Ψ−R

χρ

Φ (Ψ)consists of a near zero-level background, and a

group of enhanced foreground peaks, each representing an

object of interest.

In our study, we convert to a gray level image from the

color segmentation output resulting from MSCP by keeping

and complementing its first color channel. An example of

applying this process to the image in Fig. 1(b) is presented

in Fig. 2, where the marker image is obtained by applying

the image opening process to the mask image with a circular

structural element ρ having a radius of 30 pixels.

D. Contour Regulation with Deformable Model

Machine-based nuclei segmentation algorithms could yield

nuclei with spiky boundaries due to imperfect processing

modules and severe artifacts introduced in the image acqui-

sition process. To address this problem reliably, we would

like to regularize nuclei shapes in a manner that leverages

both image data and model knowledge. For this purpose, the

deformable model with Gradient Vector Flow (GVF) [9] is

used to regulate nuclear boundaries.

A typical parametric active contour can be represented by

a closed 2-D curve z(s) = [x(s),y(s)] ∈ R2, where s ∈ [0,1]
is the normalized arc length of the curve. By contour defor-

mations, the following energy functional is to be minimized:

E (z(s)) =

∫ 1

0

1

2

(
α‖zs‖

2 + β‖zss‖
2
)
+ Ee (zs)ds (8)

where α and β are two weights that regulate the tension and

rigidity of the deformable curve; zs and zss are the first and

second derivatives of z with respective to s. Additionally,

the term Ee represents the external energy function usually

derived from the image and has smaller values at image

features. Based on the variational calculus theory, the func-

tion z(s) minimizing the functional E defined in (8) is the

solution to the Euler equation that can be interpreted as a

force balance equation. Using the force balance formulation,

the GVF force field was proposed to replace the traditional

potential force in (8) by a diffusion process of the gradient

vectors derived from an edge map [9].

E. Segregation of Overlapped Nuclei

Identifying boundaries of overlapped nuclei is challenging.

Frequently, nuclear boundaries are ambiguous in microscopy

images. Exclusion of these cases might be unacceptable in

(a) (b) (c) (d)

Fig. 3. A example of nuclei segregation. (a) Nuclear mask; (b) Distance
transformation map overlaid with iso-contours; (c) Ridges detected by
watershed method; (d) Final separated nuclear boundaries (green) overlaid
on the color image.

some cases, as they could constitute a significant portion of

all nuclei in a slide. As a result, this issue has to be directly

addressed.

A natural and effective way to solve this problem is to

think of a set of overlapped nuclei as a group of basins

in the image domain, where the ridges in-between basins

are the borders that isolate nuclei from each other. This

is precisely the idea behind the watershed algorithm [10].

In our application, we first create the nuclear binary mask

image using those nuclear contours produced by the de-

formable model. This is followed by computing the distance

transformation of the binary mask. Finally, the watershed

algorithm is applied to the distance map D(x,y) where ridges

between pairs of connected nuclear regions are detected. In

Fig. 3, we present an example where a group of connected

nuclei is separated with the watershed method. In Fig. 3(a),

the nuclear mask of five overlapped nuclei are shown. The

corresponding distance transformation map superimposed

with iso-contours is illustrated in Fig. 3(b). Ridges detected

by running watershed algorithm over distance transformation

map are displayed in Fig. 3(c). Finally, boundaries of the

separated nuclei (in green) are superimposed on the original

color image, as shown in Fig. 3(d).

III. EXPERIMENTS AND RESULTS

In this study, our testing image dataset consists of 11

whole-slide microscopic images of diffuse gliomas contain-

ing 1965 nuclei spanning the full range of the nuclei varia-

tions. All images are scanned at 40x magnification level with

cytological components highlighted by the Haematoxylin

and Eosin (H&E) stain. To make human annotation a task

practically feasible in terms of time cost, one experienced

neuropathologist is asked to independently mark boundaries

of nuclei of interest. In aggregate, 220 nuclei are marked

by the neuropathology expert. The choice of marked nu-

clei is made in a way such that the complete spectrum

of oligodrengroglioma-astrocytoma continuum is covered in

principle.

TABLE I

SEGMENTATION PERFORMANCE ASSESSED BY DIFFERENT MEASURES

ARE COMPARED BETWEEN OUR PROPOSED METHOD AND THE

CANONICAL CELLPROFILER ANALYSIS PIPLINELINE.

Alg. FPAR FNAR ER MI2UR CD HD

CellProfiler 20.13% 24.11% 44.23% 64.52% 3.21(pix) 9.37(pix)

Proposed 22.85% 13.00% 35.85% 72.45% 2.85(pix) 6.90(pix)

Improvement ∆% -13.51% 46.08% 18.95% 12.29% 11.21% 26.36%
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Fig. 4. An array of sampled nuclei with human markups (red) and algorithm
results (green) is presented.

To demonstrate the efficacy of our method, we gener-

ate a nuclear array consisting of sampled nuclei marked

with machine-generated (green) and human-identified (red)

nuclear boundaries in Fig. 4. By visual inspections, it is

noteworthy that results from the algorithm and the neu-

ropathologist agree with each other with good concordance.

To evaluate the algorithm-human agreement in a quantitative

manner, we further utilize a set of metrics devoted to

describing the degree of agreement between nuclear regions

marked by the human reviewer and those segmented by

the machine algorithm. These metrics include False-Positive

Area Ratio (FPAR, defined as area detected by algorithm but

not by human over human markup area), False-Negative Area

Ratio (FNAR, defined as area detected by human but not by

algorithm over human markup area), Error Rate (ER, defined

as the sum of FPAR and FNAR), Mean Intersection-to-Union

Ratio (MI2UR, defined as the average of intersection-to-

union ratios associated with all nuclei), i.e. Jaccard coeffi-

cient, Centroid Distance (CD, defined as distance between

centroids of a corresponding pair of nuclear boundaries

detected by algorithm and human), and Hausdorff Distance

(HD) [11]. For comparison, we also apply to the same image

set the IdentifyPrimAutomatic segmentation module with

Background Global option offered by the Broad Institutes

CellProfiler. The resulting performances evaluated with the

aforementioned measures are presented in Table I for both

our proposed algorithm and CellProfiler. From Table I, it

is noted that our nuclei segmentation method compares

favorably to CellProfiler for all measures but FPAR. To

illustrate the superiority of our method to CellProfiler with

finer granularity, we further compare histograms and com-

plements of the heuristic cumulative distribution functions

of Intersection-to-Union Ratios (I2UR) associated with our

method and CellProfiler in Fig. 5. From Fig. 5(a), it is noticed

that the histogram of I2URs associated with our method is

substantially skewed towards high I2UR, only presenting a

small tail around low I2UR. As a result, we conclude that

the overall FPAR and FNAR associated with our method are

substantially deteriorated only by a small number of cases

where segmentation results are not optimal. Moreover, we

plot in Fig. 5(b) the complement of the heuristic cumulative

distribution characterizing the decrease in nuclei percentage

as I2UR goes up for each method. The y-axis value of each

point on the curve represents the percentage of segmented
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Fig. 5. (a) Histograms, and (b) complements of the heuristic cumulative
distribution functions of I2URs are compared between our method (red) and
CellProfiler (blue).

nuclei whose I2UR is as large as or greater than its x-axis

value, i.e. y = Pr(X >= x) = 1−Pr(X < x), given the random

variable x representing the I2UR. The resulting Area Under

Curve (AUC) for our method is 0.73, whereas AUC for

CellProfiler is 0.65.

IV. CONCLUSIONS

In this paper, we present a complete and self-reliant image

analysis workflow developed for identifying a wide spec-

trum of nuclei presented in microscopic images of diffuse

gliomas. The developed analysis algorithm is sufficiently

robust to considerable image variations inexorably coupled in

microscopy images. To validate the efficacy of this method,

we demonstrate that computerized nuclei detection results are

in good concord with human markups both in terms of visual

assessments and various quantitative measures. Additionally,

we present the superiority of our method to CellProfiler, a

widely used software, for performance comparisons. This

suggests that the developed system is promising for generat-

ing quantitative and reliable analysis results to better support

further glioma analysis in the future work involving feature

extraction and classification.
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