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Abstract— Understanding the mechanisms involved in cell de-
formation and motility is of major interest in numerous areas of
life sciences. Precise quantification of cell shape requires robust
shape description tools to be amenable to subsequent analysis
and classification. The main difficulty lies in the great variability
of cell shapes within a given homogeneous population. In
this work, we propose a framework for cell shape extraction
and classification for 3D time-lapse sequences of living cells,
based on the SPherical HARMonics transform (SPHARM).
Starting from an initial segmentation of the cell surface over
time, this mathematical representation enables us to represent
each extracted surface by a unique set of coefficients, while
taking into account invariance properties such as translation
or orientation. Then, unsupervised classification is conducted
using a multi-class K-Means approach, so as to extract the most
pertinent number of classes representing the different phases of
the cell deformation. Experimental results on several sequences
give encouraging results, and show that the proposed approach
can be used to perform automated sequence annotation, and
can be further applied to compare shape characteristics across
different cell populations.

I. INTRODUCTION

Cell deformation is central to several fundamental
biological processes, many of which have important medical
implications. For instance, cells of a developing embryo
migrate to distant locations, where they specialize in
shape and in function on the onset of organ morpho-
genesis [8]. More generally, cells and unicellular organisms
characterized by amoeboid motion exhibit an ordered cycle
of complex shape changes in order to generate movement
[1]. Understanding the mechanisms and factors impacting
on cellular shape is thus a crucial aspect in cell biology,
and calls for shape quantification tools able to efficiently
describe and further discriminate the variety of shape
configurations.

A wealth of generic shape descriptors have been proposed
in the literature over the past years. Simple descriptors
include basic measures such as size or sphericity, while mor-
phological descriptors exploit a voxelized representation of
the object to compute skeletons and other geodesic features
from the object. Such descriptors are simple and intuitive,
yet they only provide an approximate description of the
shape at hand, moreover they are particularly sensitive to
small shape variabilities. To overcome these issues, more
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advanced mathematical descriptors based on frequency anal-
ysis have been developed, and aim to represent the surface
of a given object as a combination of basis mathematical
functions. In this category, the SPherical HARMonics trans-
form (SPHARM) has received extensive attention over the
past decade, with multiple application in biological shape
modeling or comparison [7], [9]. The SPHARM transform
considers any closed shape as a function of the unit sphere,
and simplifies this function into a unique set of coefficients,
facilitating subsequent shape characterization and classifica-
tion tasks. They are particularly well suited for shape sets
which exhibit important shape variabilities such as living
cells, and offer interesting properties such as position and
orientation invariance.

In this paper, we propose a novel application of the
SPHARM transform to perform automatic quantification and
unsupervised classification of cell shape in 3D+t microscopy
sequences. The cell shapes are initially extracted (segmented)
from the original stacks using our 3D Active Mesh frame-
work, which describes each cell surface using a triangular
mesh surface of adjustable resolution (we refer the reader to
[4] for details). Then, each mesh is projected onto the unit
sphere (cf. section II-A) and then transformed into the spher-
ical harmonics space (cf. section II-B) for subsequent shape
analysis and classification using an unsupervized K-Means
approach (cf. section III). Preliminary results show that sev-
eral shape configurations can be automatically distinguished
during the cell deformation over time, allowing automatic
annotation of 3D time-lapse sequences. Finally, we conclude
in section IV by discussing the potential applications of this
work for cell shape recognition in biological sequences.

II. SHAPE DESCRIPTION USING SPHERICAL HARMONICS

The spherical harmonics transform applies to scalar or
vector-valued functions of the unit sphere f : S2 7−→ RN .
Hence, the first step in the analysis is to perform a one-to-one
mapping of the cell surface onto the unit sphere. Bijectivity
ensures unicity of the analysis and allows to reconstruct the
original surface from its spherical projection.

A. Spherical surface mapping and parameterization

Spherical surface mapping has received substantial atten-
tion from the computer vision community, for the numerous
application in computer graphics, object modeling and shape
analysis [3]. Spherical surface mapping is another member
of the family of inverse problems, which must be solved
iteratively, while suitable regularization strategies should
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Fig. 1. Surface mapping and reconstruction using the SPHARM-MAT toolbox. (a) Original surface; (b) Mapping on the unit-sphere; (c,d) Reconstructed
surface using l = 5 (c) and l = 11 (d).

be employed to minimize surface distortion and converge
toward a unique bijective mapping.

While earlier approaches relied on a voxelized represen-
tation of the object surface [2], more recent techniques have
allowed to map arbitrary triangular meshes, e.g. [5], [10].
In this work we use the CALD framework [10], which has
the advantage of measuring a mapping quality criterion, and
produces parameterized surfaces that are directly amenable
to SPHARM transform, as we shall describe later.

Like many other mapping techniques, a North and South
pole must be chosen on the surface to initialize the mapping
process. In the CALD approach, these poles are chosen
as the two vertices with the most distant projection onto
the principal shape axis. Then, the algorithm performs an
iterative mapping that controls area and length distortions
simultaneously. This is done by applying a local and a
global smoothing alternatively. Local smoothing is achieved
by minimizing the area distortion cost locally for each mesh
vertex, i.e. by moving each vertex such that all triangles
in the immediate neighborhood have equal area. The global
smoothing aims to equalize the area distortion cost for all the
mesh vertices, by setting the North Pole towards the most
distorted vertex thanks to a rotation. This step rearranges the
parameter space so that every spherical region is converted
to a new region with same area as the corresponding region
on the object surface. In practice, global smoothing does not
control length distortion, therefore the algorithm alternate
between local and global smoothing until convergence. An
illustration of the surface mapping is given in Fig. 1-b.

B. The Spherical Harmonics Transform

SPherical HARMonic (thereafter SPHARM) analysis is
generally seen as the extension of Fourier analysis on the
unit sphere. In the same way that vectors can be described
through projections onto each axis (i.e. by scalar products),
expansion coefficients (scalar product between functions)
can be used to describe functions. On the unit sphere, an
orthonormal basis for the Hilbert space of square-integrable
function is given by the spherical harmonics:

Y ml (θ, ϕ) = kl,mP
m
l (cos θ)eimϕ, (1)

where l and m are respectively the degree and order of
the harmonic, kl,m is the expansion coefficient and Pml is
the associated Legendre polynomial. Using this basis, any

spherical scalar function f(θ, ϕ) can be expanded as follows:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

f̂(l,m)Y ml (θ, ϕ), (2)

where f̂(l,m) is the (l,m) harmonic coefficient, given by:

f̂(l,m) = kl,m

∫ π

0

∫ 2π

0

e−imϕf(θ, ϕ)Pml (cos θ) sin θdϕdθ

(3)
The coefficients f̂(l,m) (3) are unique, thus they can be
used directly to describe any arbitrary shape. The spectral
decomposition of the input signal is then straightforward:
lower degrees correspond to lower frequencies and hence
describe the global shape of the object, while higher degrees
describe the details of the surface.

Higher dimensional (non-scalar) spherical functions can
also be expanded using SPHARM, by expanding each com-
ponent of the function independently. In this work, the trans-
form is applied to a surface defined in the Cartesian space
(x, y, z) and parameterized into a spherical signal written
in the polar system as v(θ, ϕ) = (x(θ, ϕ) y(θ, ϕ) z(θ, ϕ))T .
Hence when (θ, ϕ) runs over the sphere, v(θ, ϕ) runs over
the object surface. The SPAHRM transform is then ap-
plied to each component of v(θ, ϕ) independently, yielding
SPHARM coefficients with three components.

An appealing property of the SPHARM transform is that
a rotation in the parameter space induces a rotation in the
object space. This property allows to compute descriptors
that are invariant to rotation [6], thus allowing generalized
shape comparison and classification.

III. APPLICATION TO CELL SHAPE CLASSIFICATION

We present here experimental results of shape extraction
and classification applied to 3D+t video sequences of de-
forming biological objects observed in 3D fluorescence mi-
croscopy. Our experimental model is the parasite entamoeba
histolytica, a unicellular organism characterized by amoeboid
motion. The goal here is to understand the evolution of the
various shape configurations adopted by the parasite during
its deformation over time.

A. Image acquisition and segmentation

Parasites deform freely within a 3D matrix, and 3D image
stacks are acquired every 8 seconds for about 12 to 15
minutes (yielding 10 sequences with 90 to 120 stacks)
using a spinning disk confocal microscope equipped with a
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25× objective. Automatic segmentation and tracking is then
achieved using active meshes [4], providing a precise de-
scription of the surface using a triangular mesh that is directly
amenable to shape analysis using spherical harmonics.

B. Extraction of the SPHARM coefficients

We use the SPHARM-MAT Toolbox (available at
http://www.iupui.edu/∼shenlab) to perform the spherical pa-
rameterization and compute the spherical harmonic decom-
position (cf. Fig. 1). Rotational invariant descriptors are
computed for each shape following [6]:

Cinv =
(
C2
x + C2

y + C2
z

)1/2
(4)

C. Shape classification

Our goal is to perform automated annotation of cell
deformation, yet with no prior knowledge on the nature of the
deformation process. Therefore, we perform unsupervized
classification of the harmonic coefficients using the K-Means
algorithm, for which we compute an optimal number of
classes under the following conditions:

1) Minimize the total number of classes n, to avoid over-
segmentation of the shape space,

2) Maximize the distance between classes dbc, given as
the squared mean distance between all class centroids µn
and the center of the shape space µS :

dbc =
n∑
i=1

card(n)(µn − µS)2,

3) Minimize the distance within classes dwc, given as the
squared mean distance of all shapes to their class centroid:

dwc =
n∑
i=1

∑
s∈S

(s− µK(s))2,

where s is an individual of the shape space, and K(s) its
corresponding class. A minimal shape dispersion is preferred
to assess the significance of each extracted class.

Consequently, we compute the optimal number of classes
as arg min

n
c(n), with c(n) given by:

c(n) =
n ∗ dwc
dbc

.

Finally, to cope for the sensitivity of the K-means algorithm
to initialization, this criterion is computed for 300 successive
classifications initialized randomly, and the best criterion
value is kept for each class.

D. Results and discussion

1) Shape clustering: Fig. 2 plots the optimal classification
criteria depending on the number of classes. Strikingly, we
notice a local minumum around 5 classes for all the analyzed
sequences, with 4 and 6 classes also showing good results.
As visual assessment, Fig. 4 illustrates the classification on
a sequence of 92 time points using 4, 5 and 6 classes, and
display for each class the closest cell to the class center. Here
we notice that the three first classes are always represented
by the same shapes, so is the 4th class in the 5-class and
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Fig. 2. Evolution of the classification criterion c(n) (Y-axis) for various
number of K-Means classes (X-axis). For each class, 300 classification trials
are conducted, and the best criterion is kept.

6-class case. Additionally, we see that class 4 in the 4-class
case coincides with class 5 in the 6-class case, suggesting a
more ambiguous shape distinction in classes over 3.

2) Time-based analysis: Fig. 3 illustrates the evolution
over time of the first coefficient for the previous cell in the
optimal 5-class case, with each value pseudo-colored by its
corresponding class. This plot confirms that the first three
classes are better distinguished than the others, due to less
ambiguity in the classification process. Moreover, we observe
that consecutive sequence time-points are generally found
in the same classes, demonstrating that small variations in
cell shape induce small variations in the spherical harmonic
coefficients. This observation suggests that the proposed ap-
proach may provide a powerful sequence annotation tool for
subsequent human interpretation of the observed dynamics.

Fig. 3. Evolution of the first harmonic coefficient (Y-axis) along the
sequence (X-axis represents sequence frames) for n = 5 classes.

3) Discussion: Our results were obtained using the K-
Means algorithm with classical euclidean distance measure.
In order to verify that this distance measure did not induce a
bias due to the variety in scale of the SPHARM coefficients,
we performed a PCA analysis of the coefficient space,
and found that the highest component retained only 21%
of the information, showing that the information is quite
homogeneously distributed. This distribution may strongly
depend on the application, therefore this distance measure
should be adjusted accordingly.
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(a) Class 1/4 (b) Class 2/4 (c) Class 3/4 (d) Class 4/4

(e) Class 1/5 (f) Class 2/5 (g) Class 3/5 (h) Class 4/5 (i) Class 5/5

(j) Class 1/6 (k) Class 2/6 (l) Class 3/6 (m) Class 4/6 (n) Class 5/6 (o) Class 6/6

Fig. 4. Unsupervised classification of harmonic surfaces with varying number of classes. For each class, the closest surface to the class center is displayed.

IV. CONCLUSION

We have presented a novel application of the Spherical
Harmonics transform for robust description of cell shape
during deformation, enabling unsupervised shape classifica-
tion for shape recognition and sequence annotation in 3D
time-lapse microscopy. The proposed approach represents
each cell shape using a unique set of harmonic coefficients
which are invariant to position and orientation, allowing to
considerably reduce the parameter space and thereby enhance
the classification process. Preliminary results on trial data
sets are very encouraging, and show that distinct families
of shape configurations can be automatically extracted over
time, while statistical measures assess the quality of the
extracted classes. Further applications of this tool include
the computation of differential statistics across different cell
populations, for instance in order to assess the impact of the
experimental conditions (substrate, environment, chemical
compounds) on the cell deformation.
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