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Abstract— Analysis of Wireless Capsule Endoscopy (CE)
images has become a very active area of research since this
novel technology enabled access to previously inaccessible areas
of the gastrointestinal tract, especially the small intestine. Art
has investigated automatic segmentation of organ boundaries,
detection of lesions and bleeding as well as other supervised and
unsupervised analysis. However, all of this art has focused on
treating the images as individual and independent observations
that contribute towards a unique and separate decision. Given
the overlap between the images, this is clearly not the case.
A human, by contrast, performs assessment by combining the
information seen in all neighboring views of the anatomy in a
study. This article makes two significant contributions. Towards
combining information from multiple images, we propose a
supervised classification approach using an HMM framework.
Secondly, we use a weak (k-NN) classifier to prototype and
evaluate such a framework for regions of the GI tract containing
polyps. The combined framework significantly improves the
performance of the individual classifier and experiments show
promising performance with accuracy > 0.9.

I. INTRODUCTION

Poor gastrointestinal (GI) tract health has an impact be-
yond digestive health, and often causes poor overall health.
As a result, capsule endoscopy (CE) images have become
an interesting treasure trove of information for researchers
creating tools to diagnose GI conditions such as bleeding,
ulcers or other irritable bowel syndrome conditions. CE was
introduced by Given Imaging in 2000 [1], and granted the
US Food and Drug Administration (FDA) approval in 2001.
Over a million GIVEN PillCam Small Bowel (SB) alone
devices have been used worldwide by 2010, and CE is
on track towards becoming a common technique for the
diagnosis of many diseases of the small bowel [2], and more
than 1000 peer-reviewed publications have appeared in the
medical literature [3].

The disposable CE device is size about the same as a large
vitamin pill measuring 26 mm × 11 mm, and consists of a
video camera, an illumination source, batteries and wireless
communication electronics. The GIVEN PillCam SB used
in these experiments transmits 576 × 576 color images at
2 images per second with a field of view of 140 degrees,
magnification of ×8, and a depth of view is 1 to 30 mm.
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Fig. 1. Examples of CE image sequences - polyp (a, b) and normal (c,d)
sequences.
An outpatient procedure typically generates data for up to
8 hours limited by battery life, and typically produces more
than 50,000 images for each patient. The video is reviewed
offline on a workstation, where a physician can perform
diagnosis and assessment [2].

Literature [4]–[6] reports CE image and video analysis
for automation of assessment for conditions such as bleed-
ing [7], lesions [8], polyps [9]–[12] as well as topographical
segmentation [13]. For example, [14] et al describe a cascade
method for informative frame detection which uses local
color histogram to isolate highly contaminated non-bubbled
frames, and [13] et al perform topographic segmentation
of the gastrointestinal tract to detect organ boundaries. We
have also previously investigated CE studies for lesion
detection and classification, duplicate detection and other
assessment [8], [15]–[18].

Literature has so far treated CE images as individual
independent observations. The information in one image is
not related to another image, even though there is significant
overlap in the neighboring images (Figure 1) in most images.
Several neighboring images (a sequence) capture clinically
relevant information for the same anatomy and these are
viewed by a clinician together in a multi-image (2,or 4 frame
grid) view for diagnosis.
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This paper, therefore, significantly extends the art by com-
bining the information in CE image sequences for a common
diagnosis. To our knowledge, there is no comparable art
on supervised classification of CE image sequences. Below,
we describe a Hidden Markov Model (HMM) framework to
classify CE polyp image sequences.

II. METHODS

We use a supervised classification framework. Supervised
classification requires generation of a set of features repre-
senting the image information in fewer dimensions, to be
used for training of and validation of the statistical classifier.

Polyps result in variation of shape, color, and texture in
CE images. Literature reports many color, texture, shape and
edge features [8], [13], [15], [19], [20]. Here, we used
customized color, texture, and edge features reported in [8],
and used in that work for representing lesion characteristics.
Color Features: The MPEG-7 [21] dominant color descriptor
(DCD) clusters image color information in LUV space with
a generalized Lloyd algorithm. The descriptor contains the
representative colors, their percentages in the image and
several other statistical measures. Our customized version
uses 6 colors and their percentages in 24 dimensions as the
feature vector.
Edge Features: The MPEG-7 edge histogram descriptor
(EHD) extracts the spatial distribution of five types of
edges(0, 45, 90, 135 degrees and remaining non-directional
edges). Edge features play an important role in detection
of the circular bumps and erosions resulting from polyp
boundaries. Our customized descriptor uses a histogram of
edge distributions for 16 image blocks in 80 dimensions.
Texture Features: The MPEG-7 homogeneous texture de-
scriptor (HTD) uses Gabor filters. We limit our implemen-
tation to 3 channel filters each in two radial scales for a
compact representation of 12 dimensions.

This feature extraction results in a 24 dimension color, a 80
dimension edge, and a 14 dimension texture representation.
We combined our features by concatenation (118 dimen-
sions), and then employed a Laplacian Eigenmap method to
reduce the total dimensions to 13 suitable for further analysis.

In [8], [22], [23], we reported several individual and
combined classifiers for assessment of individual CE images.
This includes the common support vector machines [8],
Bayes, and k-NN classification as well as combined clas-
sifiers using Adaboost [16], [23]. We use a k-NN classifier
here. The aim is to combine the information in many images
rather than focusing on the classification of an individual im-
age or a particular classifier, and classifier(s) may be replaced
or added as appropriate in subsequent investigations.

A. k-NN Classifiers

The k-NN classifier is based on non-parametric density
estimation. It is an intuitive method because examples are
classified based on their similarity with training data. The
k-NN method only requires an integer k, a set of labeled
examples and a measure of ”closeness”. k-NN is also a stable
classifier [24], which means that the parameter k does not

greatly vary the performance of the classification. We use a
3-nearest neighbor implementation in the experiments below.

B. Hidden Markov Models

HMMs are widely used in temporal pattern recognition in
speech, handwriting, gesture recognition, and bioinformat-
ics [25]–[29]. For example, [29] presents a system that seg-
ments a soccer video into parts, representing active playing
sequences and breaks, and [30] segments a CE study into GI
organs.

Before a model is trained, we specialize the HMM for
abnormality (polyp) detection. Our model is summarized
below:
• Hidden states (Figure 2), denoted by S =
{Polyp,Normal} (N = 2) annotated by the ground
truth are defined as polyp (P, state 1) images labeled
as “polyp” in the ground truth, and normal (N, state 2)
images labeled as “normal” in the ground truth.

• Observations, denoted by O = {polyp,normal} (M = 2),
are the outputs of the binary k-NN classifier.

• A state transition matrix characterizes the temporal rela-
tionship between hidden states for the polyp sequences
in our study.

• The Observation matrix represents the performance of
the classifier, i.e., whether images are classified cor-
rectly by the current classifier. As usual, its four entries
are true positive, false positive, false negative and true
negative, respectively.

• An initial state distribution means the probability of
each hidden state (polyp or normal) occurring at the
beginning in any polyp sequence.

Fig. 2. The HMM for Polyp Analysis

We use multiple first-order discrete HMMs which perform
classification based on b j(k) and apply transition constraints
ai j.The classification process is divided in a training (learning
stage) and evaluation stage as usual. We first train an
HMM model with the labeled dataset. Our experimental data
contains annotated polyp and non-polyp (normal) sequences.
Each image in a sequence is classified using a binary
classifier trained on the features described above. The output
of the classifier forms the observation for the HMM. In the
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experiments below, we report on both constant and varying
lengths of sequences.

Given a set of sequences {Oi}, an HMM is trained using
the Baum-Welch algorithm [25], [26] which determines the
parameters λ that maximize the probability P({Oi|λ}). A
Generalized Expectation Maximization algorithm was used
to uncover the best structure of the hidden states. In the
evaluation stage, the trained HMM uses the standard Viterbi
algorithm [31] to estimate the most probable sequence of
states for the test dataset for classification of sequences as
usual.

III. EXPERIMENTS AND RESULTS

The Johns Hopkins CE archive contains 47 CE stud-
ies [15], and over 80,000 annotated images collected using
a Johns Hopkins Institutional Review Board (IRB) protocol.
We constructed two relevant data sets from these images. A
dataset with 200 polyp and 200 normal CE images was built
for k-NN classifier training and validation. These images are
not necessary consecutive. A second dataset consists of 1120
images (560 polyp images and 560 normal images) in which
there are 224 representative polyp (112) and normal (112)
sequences, each consisting of 5 consecutive images. Images
containing polyps are labeled as a positive sample. A single
expert reviewer assigned the ground truth, and annotation by
multiple clinical experts is ongoing in related work.

We then trained and tested both k-NN image
classification and HMM sequence classification on this
data. All classification methods were implemented and
tested using MATLAB (MathWorks Inc., NATICK,
MA) on a Windows dual core workstation with 4
GB RAM. The UBC HMM Toolbox (Murphy et al,
http://www.cs.ubc.ca/∼murphyk/Software/HMM/hmm.html,
1998) provided the HMM framework. As usual, we
computed the accuracy measure as:

Accuracy =
Correct Classifications

Total Number of Sequences
(1)

Precision =
Correct Positive Classifications

Positive Classifications
(2)

Recall =
Correct Positive Classifications

Number of Positives
(3)

On individual images, our trained k-NN classifier produces
an accuracy of 0.833. We then trained an HMM using
variable length image sequences, i.e. T ∈{2,3,4,5} using the
trained k-NN classifier. The state transition matrix generated
during the training phase was:

A =

[
0.9871 0.0129
0.0157 0.9843

]
(4)

We can see (from (4) ) that a polyp sequence may
contain some normal views(a12 = 0.0871), and vice versa,
although the variation in length 5 sequences is not very high.

The corresponding observation matrix, and the initial state
distribution were:

B =

[
0.9129 0.0871
0.0329 0.9671

]
(5)

π =
[

0.4865 0.5135
]

(6)

which also agree with our expectation. The probabilities
that a sequence begins with polyp or normal image are almost
equal.

We evaluated the trained HMM model using sequences
of varying lengths (1 to 5) by omitting trailing images in
the evaluation. Table I shows the comparison of accuracy,
precision and recall for different lengths. The length=1, or
single image result represents the the performance of the k-
NN classifier on individual images. All three measurements
increase when classification uses multiple images, and no
significant improvement is observed after 4 images in a
sequence.

TABLE I
PERFORMANCE OF CLASSIFICATION USING SEQUENCES OF LENGTH 1 TO

5. THE FIRST RESULT SHOWS THE k-NN CLASSIFIER PERFORMANCE.

Sequence Length 1 2 3 4 5
Accuracy 0.833 0.792 0.875 0.917 0.917
Precision 0.910 0.833 0.917 0.945 0.945

Recall 0.833 0.810 0.893 0.917 0.917

Figure 3 shows a polyp sequence that was classified
correctly. The estimated classification results by kNN is {P
P N P P} (P for polyp and N for normal). The HMM
result improves the accuracy as it integrates the relationship
between consecutive images.

Fig. 3. A correctly classified polyp sequence.

By contrast, Figure 4 shows a polyp sequence {P P P P
P} that was misclassified as normal. The k-NN classified the
images as {P N N P P}, and after the HMM classification,
the estimated most probable state sequence is {P N N P P}.

Fig. 4. An incorrectly classified polyp sequence

Fig. 5. A misclassified normal sequence containing extraneous matter.

Fig. 5 shows an example of a normal sequence that was
misclassified. The output of k-NN classifier in this case is
{N P P P N}, while the output of the HMM is {P P P P P}
which classifies it to polyp sequence.
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As is expected, the HMM accuracy depends on the indi-
vidual k-NN classifier performance. In the misclassification
above (Figure 4) the misclassified images have no weak
polyp characteristics. Similarly, the misclassified normal
sequence contains yellowish extraneous material that cre-
ates edge distributions and texture disruption similar to the
polyps. Additional training, and combined classifiers [23] can
easily remove these individual classifier limitations.

IV. DISCUSSION

We describe a novel framework for CE image sequence
classification and its application to polyp detection. A k-
NN classifier is embedded in a HMM framework which can
recognize polyp or normal image sequence of various length.
Preliminary experiments show promising performance of the
framework, with an accuracy > 0.9.

In ongoing work, we are expanding our experimental
dataset to include additional images, abnormalities(lesions,
and bleeding), and multiple expert assessments. We will also
integrate our work in [23] by using alternative features, and
individual, and combined classifiers in this framework.

Our end goal is to create a semi-automated tool for
quantitative assessment of pathologic findings using only
CE imaging. We aim to continue further development of
our statistical classification methods, combining individual
classifiers, and validation on the larger datasets towards this
goal.
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