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Abstract— In this paper we compare the classification 

accuracy of using compressed domain color (CDC) descriptors 

versus traditional full decoded images, for the purposes of 

topographic classification of wireless capsule endoscopy 

images. Results using a dataset of 26469 images, divided into 

stomach, small intestine and large intestine show a difference in 

classification accuracy below 1%. We also show that errors are 

mostly located near zone transitions (the pylorus and the ileo-

cecal valve) and motivate the need for other visual descriptors 

(e.g. shape, motion) for addressing these specific areas. We 

conclude we can use the advantages of CDC in this type of 

classification with minor accuracy sacrifice. 

I. INTRODUCTION 

APSULE endoscopy is a revolutionary pill shaped 

micro-device that explores the gastro intestinal (GI) 

tract reaching areas where the conventional endoscopy can‟t 

(Fig.1). It is ingested by the patient and captures 2 to 4 

images per second for about 8 hours, typically reaching the 

colon. The signal transmitted by the capsule is captured by 

an external antenna array and stored on a portable hard drive 

carried in the patient‟s belt. According to its main 

manufacturer (Given Imaging, Israel), more than a million 

patients worldwide have undergone capsule endoscopy 

exams and more than 1,200 peer-reviewed clinical papers 

have demonstrated its clinical usefulness for detecting 

abnormalities within the GI tract [1]. 

Possibly the main setback of this technology is the time it 

takes to analyze an average of 60000 frames, which typically 

takes between 30-45 minutes by an experienced clinician 

[2]. Automation or at least semi-automation is thus 

necessary for reducing the costs of this procedure, paving 

the way for simple and effective GI screening mechanisms. 

Although the final goal of such systems is event detection, 

these computer vision algorithms can clearly benefit from an 

estimation of the organ being visualized (algorithms for the 

stomach need to be quite different from algorithms for the 

colon), motivating topographic segmentation which is 

defined as the segmentation of the full video exam into a set 
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of smaller videos corresponding to different GI organs (e.g. 

stomach, colon, etc), thus mapping the different places 

inside the GI tract. Some interesting side effects of this task 

are that we can not only automatically estimate gastric and 

intestinal transit times, which is relevant information for a 

clinical diagnostic, but also save up to 15 minutes from the 

manual annotation procedure consisting of the marking of 

the locations of the pylorus and the ileo-cecal valve. 

 

 
Fig. 1.  The wireless endoscopic capsule (1 - Optical dome; 2 - Lens holder; 

3 – Lens; 4 – Illuminating LEDs; 5 – CMOS imager; 6 – Battery; 7 – ASIC 

transmitter; 8 – Antenna). 

 

Previous research on this topic has shown that it is possible 

to accomplish this objective using computer vision 

methodologies including MPEG-7 visual descriptors [3,4] 

and adapted Hue-Saturation histograms [5]. Most published 

literature, however, disregards the computational cost of 

these algorithms. If we intend to have autonomous screening 

systems in the future using wireless endoscopic capsules, it 

is highly desirable that these algorithms can run on simple 

portable hardware that might be incorporated, for example, 

next to the portable hard-drive carried in the patient‟s belt 

during the procedure. A research trend that the scientific 

community has explored for other fields is compressed 

domain processing, which means that we can exploit the 

information used to compress the video data for transmission 

and storage purposes, and extract relevant computer vision 

information from it. A good example is Coimbra‟s work on 

optical flow estimation [6].  

In this paper we will show how this compressed domain 

information, namely DC coefficients of a MJPEG 

compressed video stream, can be used to perform 

Compressed Domain Topographic Classification for Capsule 

Endoscopy 

N. Marques, E. Dias, J.P.S. Cunha, Senior Member, IEEE, M. Coimbra, Member, IEEE 

C 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 6631

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



 

 

 

topographic classification of individual exam images as 

accurately as algorithms using fully decoded images. Details 

regarding the images used in this study can be found in 

Section II. Methods are detailed in Section III and results 

presented in Section IV. Observations and conclusions are 

drawn in Section V. 

II. MATERIALS 

The capsule endoscope (Fig.1) is a disposable plastic 

capsule (M2A Capsule) which weighs 3.7 g and measures 11 

mm in diameter × 26 mm in length. The contents include 

complementary metal oxide silicon (CMOS) chip camera, a 

short focal length lens, 4 white light emitting diode (LED) 

illumination sources, two silver oxide batteries, and a UHF 

band radio telemetry transmitter. Image features include a 

140° field of view, 1:8 magnification, 1 to 30 mm depth of 

view, and, given the image sample resolution of the optical 

system, a minimum size of detection of about 0.1 mm. The 

activated capsule, after removal from the magnetic holder, 

provides image accrual and transmission at a frequency of 2 

frames per second until the battery expires after 7 ± 1 hours. 

The capsule is passively propelled through the intestine by 

peristalsis. 

The dataset used in this study includes 53 full endoscopic 

exams. All exams were annotated by a senior clinical 

specialist denoting the frame which represents the separation 

of the organs (Stomach / Small Intestine; Small Intestine / 

Large Intestine). Out of the 60000 usual frames in a capsule 

endoscopic exam, we picked 500 in order to discard the 

redundant frames, i.e. frames with a lot of resemblance, and 

to ensure that the classifier doesn't train and classify two 

images that are alike. There were 2257, 15165 and 9047 

images of the stomach, small and large intestine 

respectively. All this data was obtained from the 

Capview.org database [7]. 

 

  
a) Stomach image b) Small intestine image  

Fig. 2.  Examples of endoscopic capsule images 

III. COMPRESSED DOMAIN TOPOGRAPHIC CLASSIFICATION 

Although the final motivation for the experiments and 

results presented in this paper is topographic segmentation 

(dividing the full exam into its constituent organs), we will 

focus our attention simply on the topographic classification 

stage, meaning that we will classify each individual image 

into a specific class (organ). This implies ignoring the 

subsequent segmentation stage, which combines these 

individual classification results using methodologies such as 

global model fitting [3] or Hidden-Markov Models [5]. 

Since our contribution is to show that the extracted 

compressed domain feature vectors produce similar results 

to visual descriptors extracted using fully decoded images, 

we argue that we should inspect the direct impact of this 

change in the classification process, thus ignoring the error-

correction ability of the segmentation stage. 

 

 
Fig 3. Experimental methodology used. This paper‟s contributions are 

highlighted in red. 

Given that there are a large variety of video compression 

standards, we will focus on the ones using the DCT 

transform such as MJPEG. Our proposed methodology 

would need adaptation to standards that exploit temporal 

redundancy such as MPEG-2 [8], but current systems (Given 

Imaging, Olympus) tend to use JPEG [9] or MJPEG since it 

simplifies video browsing immensely and avoids additional 

compression artifacts. 

A. DC Images 

The Discrete Cosine Transform (DCT) converts a signal, or 

in this case an image, from the spatial domain f(x,y) into a 

transform domain F(u,v), usually called the frequency 

domain. Equations (1,2) show its definition for an 8x8 block. 
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An important characteristic of the DCT transform is that it 

can be seen as a set of basis functions which given a known 

input array size (8x8) can be precomputed and stored. This 

involves simply computing values for a convolution mask 

(8x8 window) corresponding to each DCT coefficient giving 

us 64 DCT basis functions. We are especially interested in 

the DC coefficient of a luminance DCT block, given that it 

is proportional to the average grey level of the corresponding 

image block. Equation (1) simplifies greatly for this case (3): 
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Extracting the average grey level of a block is therefore 

trivial as Equation (4) shows: 
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Using these DC coefficients, it is possible to obtain low-

resolution versions of I-Frames with minimal decoding and 

processing. These images are called DC images. 

B. Color DC Images 

We can apply the same reasoning for the chromaticity 

components used in JPEG compression [9], extracting its 

DC component for both the red (Cr) and blue (Cb) 

chromaticity. Given the typical difference in resolutions 

between the luminosity and chromaticity components, there 

is the need for up-sampling the color components to produce 

the corresponding color DC images (Fig.4). 

 

 
Fig 4. Fully decoded image and corresponding color DC image 

C. Extracted Color Features 

For the experiments in this study, we will use HSV (Hue, 

Saturation, Value) and HS (Hue, Saturation) histograms as 

color features, following the good results obtained in 

previous literature for topographic classification [3-5]. The 

number of bins used is 16 for Hue, 4 for Saturation and 4 for 

Value, giving us a HSV histogram with 256 coefficients, and 

a HS histogram with 64 coefficients. In order to test the 

performance of our proposed approach, we extract these 

same color features for both raw images (fully decoded, full 

resolution images), and color DC images, thus creating the 

following four distinct visual descriptors (Fig.5): 

 Raw HSV – 256 coefficients, 16 bins for Hue, 4 for 

Saturation, 4 for Value, uses fully decoded image. 

 Raw HS – 64 coefficients, 16 bins for Hue, 4 for 

Saturation, uses fully decoded image. 

 DC HSV – 256 coefficients, 16 bins for Hue, 4 for 

Saturation, 4 for Value, uses color DC image. 

 DC HS – 64 coefficients, 16 bins for Hue, 4 for 

Saturation, uses color DC image. 
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 Fig 5. Feature extraction methodology 

D. Image Classification 

Classification was performed using the popular WEKA data 

mining platform (www.cs.waikato.ac.nz/ml/weka/). A total 

of 26469 instances were created, as detailed in Section II. 

10-fold cross-validation was used. Images were classified 

into 3 distinct classes: stomach, small intestine, large 

intestine. Support vector machines (polynomial kernel) 

exhibited the best results from the various alternatives tested, 

and were used to produce the results here presented [10].  

IV. RESULTS 

The accuracy (5) of the classification results obtained using 

each of the four color descriptors can be seen in Table 1. 

 

 Accuracy = corr. class./ total class. (5) 

 

 

Descriptor Accuracy ( % ) 

Raw HSV 85.2431 

Raw HS 83.6110 

DC HSV 84.5253 

DC HS 80.9362 

Table 1 – Accuracy results of topographic classification 

using the four proposed color descriptors. 

 

We can observe that the compressed domain descriptors 

exhibit classification results that are quite close to the ones 

extracted from fully decoded images, especially for HSV 

histograms. 

 

 Stomach Small Intest. Large Intest. 

Stomach 1352 760 145 

Small Intest. 279 13830 1056 

Large Intest. 49 1617 7381 

Table 2 – Confusion matrix for the Raw HSV descriptor 

 

 Stomach Small Intest. Large Intest. 

Stomach 1367 768 122 

Small Intest. 323 13667 1175 

Large Intest. 57 1651 7339 

Table 3 – Confusion matrix for the DC HSV descriptor 

 

A closer inspection of the confusion matrices associated 

with the HSV descriptors (Table 2 – Raw HSV, Table 3 – 

DC HSV) also shows a close similarity between both 

modalities, namely in the order of magnitude of the error 

entries, strengthening our belief that it is possible to perform 

topographic classification in the compressed domain with 

classification precisions comparable to the conventional 

fully decoded image domain. 

Although full topographic segmentation is not performed in 

this paper, we have mapped the location of the classification 

errors inside the gastrointestinal tract, thus assessing if they 

have some logical explanation associated with the visual 

nature of the observed tissues. In order to produce this map 

we have normalized the location of each error to a 

percentage its corresponding organ. As an example, if an 

6633



 

 

 

error was found in image 585 of an exam where the stomach 

ranges from image 100 to 12000, its corresponding location 

inside the stomach would be: (585-100)/(12000-100) = 

4,4%. By concatenating the three error histograms of the 

contemplated three classes, we have obtained the error plot 

displayed in Fig. 6 for the DC HS descriptor. 

 

 
Fig 6. This error plot divides the wrongly classified images into 3 different 
zones, the Stomach, the Small Intestine and the Large Intestine. The red line 

is the total amount of errors done by the classifier. The green dotted line 

illustrates the amount of images the classifier did a mistake by classifying 
them as large intestine while they were from the small intestine. The blue 

dotted line shows the reverse classification of the green dotted line.   

 
Fig 7. The left frame was captured while the capsule was still inside the 

ileum, while the right one was after crossing the ileo-cecal valve. Most 
exams exhibit this similarity, as explained in Section IV. 

Analyzing Fig 6, one can observe two relevant error peaks 

immediately after the two zone transitions (pylorus and ileo-

cecal valve). There are physiological reasons for this since in 

the beginning of the small intestine (duodenum) there is a 

strong color similarity with the stomach tissue. The visual 

distinction between these two areas includes shape (the 

typical „tunnel‟-like vision is expected in the duodenum, 

which does not happen in the stomach) and motion (free 

„tumbling‟ inside the stomach as opposed to peristaltic burst 

of forward motion in the duodenum), both of which cannot 

be quantified using color descriptors alone. The most serious 

error peak happens near the ileo-cecal valve. We can argue 

that this is because of two different facts. First, there is a 

strong color similarity (as the examples on Fig. 7 show) 

between the ileum and the cecum tissues, and they are both 

often contaminated with faeces. Secondly, it is quite 

common that the capsule actually photographs the large 

intestine while still inside the ileum. This seemingly odd 

occurrence is easily explained by the fact that the capsule 

collides with the partially opened ileo-cecal valve, 

photographs the cecum throught this partial opening, and 

bounces back inside the ileum. This can go on for almost 30 

minutes until there is a random synchronization between the 

capsule motion and the valve aperture, propelling the 

capsule through the junction. 

V. DISCUSSION AND CONCLUSIONS 

In this paper we have shown that compressed domain color 

descriptors exhibit near similar classification precision to the 

more conventional descriptors extracted from fully decoded 

images, for the task of topographic classification of capsule 

endoscopy images. This promising result reinforces the 

possibility of having in the future real-time, possibly even 

in-capsule, image processing and analysis of endoscopic 

capsule exams, by exploiting information that will be 

calculated anyway for the purposes of image transmission 

and storage. Although we do not explicitly calculate the 

computational cost savings of this approach, we can refer to 

previous literature where this has been addressed more 

carefully [11], stating that obtaining this DC image 

information accounts for less than 20% of the full decoding 

cost. Also, for creating the color histograms, DC images are 

64 times smaller than raw images, also providing some 

interesting speed-ups. In the future, we expect to integrate 

these descriptors into a full topographic segmentation 

algorithm, and inspect if real-time performance can be 

successfully obtained. 
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