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Abstract— In minimal invasive surgery (MIS) a complete and
seamless inspection of organs, e.g. the urinary bladder, using
video endoscopes is often required for diagnostics. Since the
endoscope is usually guided by free–hand, it is difficult to ensure
a sequence of seamless frame transitions. Also 2–D panoramic
images showing an extended field of view (FOV) do not provide
always reliable results, since their interpretations are limited
by potentially strong geometric distortions. To overcome these
limitations and provide a direct verification method, we develop
a gap detection algorithm using graphs. Exploiting the motion
information of the applied zig–zag scan, we construct a graph
representation of the video sequence. Without any explicit
global image visualization our graph search algorithm identifies
reliably frame discontinuities, which would lead to holes and
slit artifacts in a panoramic view. The algorithm shows high
detection rates and provides a fast method to verify frame
discontinuities in the whole video sequence. Missed regions are
highlighted by local image compositions which can be displayed
during the intervention for assistance and inspection control.

I. INTRODUCTION

Free–hand video sequences are often acquired during med-
ical minimal invasive interventions, where the whole surgical
field is scanned by endoscopes, e.g. to inspect the interior
surface of hollow organs. Consequently, the acquisition of
sufficient image sequences, which fully cover the whole
scene or at least a specified scan region without any gaps
or missing views is required. This become difficult, if the
camera is moved arbitrarily by free–hand, or the hand–eye–
coordination is disturbed, like in a video endoscopy setup. In
particular for medical diagnostics, a gap–free image sequence
is essential, since only a seamless observation of the whole
organ prevents missing tumors and makes an analysis of
cancer distributions feasible.

The visualization of a scene using an extended field of
view (FOV), constructed by successive images, is commonly
provided by panoramic images. Several image mosaicking
algorithms have been proposed for video endoscopy [1]–[5].
Missing views become directly visible in an image com-
position, since they result in image gaps or slit artifacts.
Schematic examples of incomplete panoramas composed
from a spiral and zig–zag scan are shown in Fig. 1. Although
real–time capable mosaicking algorithms are available [1],
[2], [5], panoramas are usually constructed after the im-
age acquisition process. This impedes the user to provide
additional pan shots of the scene to fill out image gaps
interactively. Furthermore, adequate visualizations and in-
terpretations of overview images are not always feasible,
since they can show strong geometric distortions induced
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Fig. 1. Discontinuous frame transitions during a spiral (left) and a zig–zag
scan (right) of an endoscope (trajectories are highlighted by solid red lines)
result in gaps within the final panoramic image compositions.

systematically by the projection of a 3–D object onto a 2–D
plane. Thus, gaps may be missed or covered by distorted
images, which lead to wrong interpretations. Only local
panorama images, which show an extended but still limited
FOV allow feasible and less distorted visualizations [6], [7].

To overcome these limitations, we discuss in this paper an
algorithm to verify continuous and seamless frame transitions
of a given input video sequence without composing any
global panorama image. Using an extended frame match-
ing method adaptive to the applied scan scheme, a graph
representation is constructed to describe the transitions and
spatial relations between all video frames. The characteristics
of the graph are then analyzed to detect discontinuities in
the data, which would result in gaps within a panorama
image. Again, instead of constructing one global overview
image, the verification process is described by a graph
search algorithm, which is computationally less complex and
independent from mapping and distortion effects.

II. GRAPH CONSTRUCTION

First, an undirected graph G = (V,E) is constructed from
a given video sequence I of N frames. Each of its nodes
V represents an image, labeled by its frame number. The
edges E of a node describe its spatial neighborhood. If two
images overlap and share a common transition region, an
edge connecting their graph nodes is constructed. If then
the whole border of an image is overlapped by neighbor
images, its graph node is characterized as a center node and
highlighted by a bold circle line. An example of aligned
video frames and their graph representation is given in Fig. 2.

A. Image Matching

To identify image overlaps our feature–based matching
[1] is applied using SURF [8]. Based on point correspon-
dences pi ↔ pj an affine transformation matrix Hj,i between
two images Ii, Ij is estimated including RANSAC outlier
rejection [9]. Commonly, a transition zone is identified by
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Fig. 2. Video endoscope images aligned on a plane (left)
and its graph G with nodes V = {1,2,. . . ,10}, and edges E =
{{1, 2}, {1, 8}, {1, 9}, {2, 3}, . . . , {9, 10}} (right).

warping the whole image Ij pixel–wise into the coordinate
system of image Ii using Hj,i. Here, we analyze the overlap
region based on the intersection points of the image borders
only. Although our algorithm is generally independent on
the image shape, we focus on the processing of elliptically
shaped endoscopic images, as shown in Fig. 3.
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Fig. 3. Overlap region of two endoscopic images with intersection points
P1 and P2 of the elliptical shaped image borders (left). Ellipse described
in parameter form with center point (x0, y0), major axis a, minor axis b,
and rotation angle α (right).

In a first step, the image border of each frame is detected
and described by points P (ϕ), fulfilling the ellipse equation

P (ϕ) =

(
x0 + a cos(ϕ) cos(α)− b sin(ϕ) sin(α)
y0 + a cos(ϕ) sin(α)− b sin(ϕ) cos(α)

)
. (1)

Using ellipse parameters (cf. Fig. 3) the intersection points
of two overlapping ellipses E1, E2 are identified by border
points, which lie on both ellipses. Without loss of general-
ity solutions of none to four points and the identity case
(E1 = E2) are possible. Although intersection points can
also be determined by numerical algorithms [10], we apply a
fast and robust geometric method to calculate them in pixel
coordinates. Geometrically, the sum of distances from any
point P (ϕ) on the ellipse to its foci F1, F2 is constant and
equal to the major diameter, as described by

D(P (ϕ)) = P (ϕ)F1 + P (ϕ)F2 − 2a = 0. (2)

Thus, the position of any point P2(ϕ) on E2 related to E1

can directly be determined. Figure 4 shows, that the sign

D(P2(ϕ)) = 0 D(P2(ϕ)) < 0 D(P2(ϕ)) > 0
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Fig. 4. Distance function D(P2(ϕ)) between point P2(ϕ) and ellipse E1

dependent on its position.

of (2) identifies, whether P2(ϕ) lies inside, outside or on

(intersects) E1. After also the points P1(ϕ) are analyzed with
respect to E2 in the same way, the boundary

B = {P2(ϕ), P1(ϕ) | D(P2(ϕ)) ≤ 0, D(P1(ϕ)) ≤ 0}, (3)

of the common overlap region can be defined as a set of
points, including the intersections and all border points,
which lie inside the opposite ellipse. In an iterative process
all other neighbor images of Ii are tested for overlaps in
the same way. Finally, the angles ϕ of all boundary points,
which are covered by transition zones with neighbor images,
are sampled and saved in the graph node Vi.

Since a feature–based image registration generally requires
a certain size of the overlap area, and free–hand video
sequences may lead to only small frame transitions, we
developed an extended matching method to detect even very
small overlap areas. Instead of transforming only Ij into
the coordinate system of Ii using Hj,i, also all neighbor
images of Ij and Ii are aligned, as illustrated in Fig. 5.
Small overlap regions are then identified by detecting the
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Fig. 5. All neighbor images f, g, h of image I1, and k, l of I2, respectively,
are transformed into the same coordinate system to detect additional
minor overlap regions (visualized by striped patterns) (top). Related graph
representations before and after the extended matching process (bottom).

boundaries (cf. (3)) between all image pairs. New transitions
result in additional edges between the related graph nodes,
as shown in Fig. 5. In conclusion, the following matching
steps are carried out:

1) Estimate a homography Hj,i between two images
Ii, Ij , using SURF features.

2) Transform Ij together with all neighbor images of Ij
and Ii into the coordinate system of Ii.

3) Determine all overlap regions with intersection points
using (2), and calculate their boundaries using (3).

4) Construct for each overlap region a graph edge, and
mark in both nodes (Vi, Vj) the angles ϕ of the image
boundary B as covered.

5) Select next image pair and go back to step 1, until all
image pairs are processed.

B. Matching Strategies

To construct a complete graph of the video sequence,
each image In can be matched with all previous images
{Im ∈ I | m = 1 . . . (n − 1)} in a sequential manner.
The brute–force search leads then to a total number of
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1
2n · (n − 1) comparisons. To reduce the overall matching
costs, we exploit the image order of a specified scan scheme
such as a zig–zag scan, as shown in Fig. 6.
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Fig. 6. Image I11 is matched ten times using brute–force matching,
whereas the number of matches can be limited by the number of images in
the previous row (in this example: six, highlighted by red dashed arrows)
(left). Labeled graph of the zig–zag scan in Fig. 1, showing border nodes,
center nodes (bold circle lines), and gap nodes (red dotted circles) (right).

III. GAP DETECTION

The verification of seamless transitions in the video se-
quence is performed by analyzing the graph characteristics.
Using the information about the applied scan strategy, e.g. a
zig–zag scan, each graph node is categorized and labeled as
a border, center, or gap node. A node is classified as a center
nodes, if all boundary pixels and angles ϕ, respectively, are
covered by overlap regions (cf. (3)). In the case of a zig–zag
scan, nodes in the first and two last scan rows, as well as
all start and end nodes of each row are selected as border
elements. For an inward–moving spiral scan, border elements
are specified by nodes of the first complete circulation. A
border node is defined as a border element, having only one
single boundary segment (ϕ intervall), which has not been
covered by any image transitions. In contrast, gap nodes
may provide more than one uncovered boundary segment.
In example the graph in Fig. 6 determined by the zig–zag
scan of Fig. 1 shows one center node (19), border nodes
(1..5, 15..18, and 20..22), and gap nodes (6..14).

With the definition of a chordless cycle [11] as a repeated
sequence of nodes in G, connected by edges E between
two adjacent nodes and not connected by any edge between
non–adjacent nodes, we specify a graph gap by following
statement:

”A gap is a chordless cycle of G, which only
consists of gap nodes.”

With our definition the gap detection in the video sequence
can now be formulated as a graph search, looking for
chordless cycles in G consisting of gap nodes. In practice
this becomes difficult, since a full search is computation-
ally expensive and requires a complete and correct graph
representing all image transitions by edges. Missed edges
or misclassified nodes will immediately result in false gap
detections. Thus, we exploit again the characteristics of
the applied scan strategy to limit the gap search in single
subgraphs of G and provide a more robust gap detection.

Assuming that gap nodes of a zig–zag scan must be
adjacent to nodes of the subsequent scan row, we limit the
gap detection to a subgraph Gs consisting of two rows of
nodes only. A gap is then identified, if at least two sequential
gap nodes are present in each row of Gs.

A. Visualization

After gaps in the graph and their related discontinuous
image transitions in the video sequence are detected, local
panorama images are composed for visualization. For this
purpose, the minimal path between all selected gap nodes
of Gs is calculated. The path may include gap, center and
border nodes. Applying our iterative mosaicking algorithms
[1], a local panorama image is composed from the images
of the minimal path. Only at this stage, the gap which
results from discontinuous image transitions within the video
sequence is visualized and displayed for verification.

B. Refinement

In a postprocessing step an image based refinement is
applied to reject false gap detections. Applying a con-
nected component analysis the number of contours c in the
panorama is determined. If c > 1 the panorama contains a
hole, whereas c = 1 identifies seamless transitions. In addi-
tion to this two classes the zig–zag scans may provide also
slit artifacts due to discontinuities between two subsequent
rows. Thus, the number of contour pixels along vertical and
horizontal profiles are analyzed, as illustrated in Fig. 7. If

hole slit seamless

Fig. 7. Panorama with a hole provides two contours (left). In the case of
c = 1, a number of contour pixels along the image profiles (white lines)
bigger than two indicates a slit (center), otherwise the image is seamless
(right).

more than two contour lines along the profiles are detected,
the image is classified as having a slit.

IV. RESULTS

For evaluation 10 video sequences of a 2–D test pattern,
as well as 32 sequences of a spherical urinary bladder
phantom are acquired from a free–hand zig–zag guided
endoscope. Representative results of one video sequence are
given in Fig. 8. The characteristics show that the extended
matching, which exploits additional overlaps between local
neighbor images, results in significantly higher numbers of
detected transitions (graph edges) compared to the standard
feature based method. The computing time of the brute–
force matching increases with 1

2n · (n − 1), whereas the
zig–zag strategy results in a linear characteristic (cf. Fig. 8).
Although the zig–zag matching leads to a faster computation
it provides a comparable number of overlap regions as the
full matching.

The results of one of the 2–D test pattern sequences are
given in Fig. 9. It shows the constructed graph and three
detected gaps with their related panorama images. The first
and last image visualization show holes (true positives). In
the refinement step the second image is re–classified as
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Fig. 8. Number of detected transitions of the extended matching compared
to the standard method for a brute–force and zig–zag strategy (left).
Computation time for brute–force and zig–zag matching over the total
number of frames (right).

Fig. 9. Graph of a zig–zag video sequence with three detected gaps and
their image compositions.

seamless, which is rated as a true negative detection. An
example of a detected slit artifact is given in Fig. 10.

Fig. 10. Image composition showing a slit at the center.

Quantitative evaluation results are listed in Table I. It
shows the classification results of all sequences. Based on
visual verifications ground truth data are determined for
assessment. Detected gaps, which image compositions show
holes or slit artifacts are rated as true positives (TP ), and
rejected seamless ones become true negatives (TN ). The
high TN rates indicate that the image based refinement
method is very robust against false gap detections, generated
by incomplete graph representations. Also the high TP rates
represent a reliable detection of transition discontinuities in
the video sequence. Only if the endoscope deviates strongly

# Gap Classification
# Sequences Detections TP TN

2–D test pattern 10 29 0.94 1.0
spherical phantom 32 38 1.0 1.0

TABLE I

from the zig–zag path, the algorithm may miss gaps due to
wrong aligned nodes in the graph of the sequence, which
explains the lower TP value of 0.94.

V. CONCLUSIONS

We showed, that a given endoscopic video sequences can
be tested for seamless and continuous frame transitions using
a graph representation. With the information about the scan
scheme like a zig–zag, all video frames and their spatial
alignment are represented by nodes and edges of the graph.
Instead of using global panorama images our algorithm
detects gaps in the video sequence, which will result in holes
and slits in a panoramic view, by a graph search algorithm.
The high classification results indicate a fast, robust and
reliable detection. Thus, in the case of inspecting an organ
for diagnostics, missed views can directly be identified from
the video sequence. Gaps which indicate holes or slits are
then visualized by local image compositions for control. With
this information the surgeon is able to re–scan the by then
unseen regions during the same intervention. In future work
the algorithm will be optimized in speed, adapted to further
scan strategies, and clinical studies will be carried out.
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