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Abstract— This paper describes a novel algorithm for track-
ing the motion of the urethra from trans-perineal ultrasound.
Our work is based on the structure-from-motion paradigm and
therefore handles well structures with ill-defined and partially
missing boundaries. The proposed approach is particularly
well-suited for video sequences of low resolution and variable
levels of blurriness introduced by anatomical motion of variable
speed. Our tracking method identifies feature points on a frame
by frame basis using the SURF detector/descriptor. Inter-frame
correspondence is achieved using nearest-neighbor matching in
the feature space. The motion is estimated using a non-linear
bi-quadratic model, which adequately describes the deformable
motion of the urethra. Experimental results are promising and
show that our algorithm performs well when compared to
manual tracking.

I. INTRODUCTION

Stress Urinary Incontinence (SUI) can be defined as the
involuntary leakage of urine due during coughing, sneezing,
and moderate to intense physical activities. SUI is considered
a “hidden epidemic” since it affects a large part of the female
population, particularly at later stages in life [1]. SUI has a
significant negative impact on the quality of life of elderly
women.

Urethral hypermobility and loss of pelvic-floor muscle
support have been identified as primary causes of female
SUI [2]. These two phenomena are typically studied using
imaging technologies and force-based measures of contrac-
tility via vaginal probes.

As mentioned in Constantinou et al [3], most visualization
studies to date have focused on measuring the displacement
of the urethra and bladder neck occurring from the initial
to the final moments of a cough, a pelvic floor contraction
or a Valsalva maneuver (i.e. an attempt to forcibly exhale
while keeping the mouth and nose closed). However, in the
study of SUI, the dynamic information regarding the motion
of the anatomic structures of interest (urethra, bladder, pelvic
floor muscle) cannot be disregarded. Motion trajectories of
the structures of interest can be extracted from 2D ultrasound
videos with computer vision techniques.

Peng et al [4] propose an algorithm for tracking the motion
of the urethra and the ano-rectal junction based on edge
detection and automatic segmentation of the tissue bound-
aries. However, in trans-perineal ultrasound, the boundary of
structures are often times ill-defined as fast motion blurs the
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Fig. 1. Example of trans-perineal ultrasound for two different subjects.
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Fig. 2. Approach overview.

image. Moreover, these structures exhibit a high inter-patient
variability in terms of contrast, brightness, and signal to noise
ratio. Fig. 1 shows an example of a well defined (left) and
a ill-defined (right) structure within red bounding box.

Bonneau et al [5] have recently proposed a track-
ing method based on optical flow, which is based on
the structure-from-motion paradigm. We adopt the same
structure-from-motion viewpoint. To quantify kinematic pa-
rameters of the urethra during contraction and effort, we
propose a novel feature-based tracking algorithm. The main
strength of feature-based tracking is that the segmentation of
moving structures is not required for tracking. Moreover, no
over-simplifying assumption about the nature of the motion
is made, since the motion is estimated using a non-linear,
bi-quadratic model. The remainder of the paper is structured
as follows. Section 2 presents the proposed approach, while
section 3 describes the experimental results and their evalu-
ation. Section 4 draws conclusions and outlines future work
directions.

II. PROPOSED APPROACH

An overview of the proposed approach is presented in
Fig. 2. The first step, which is shown as a blue box, is
an initialization performed by the user off-line. It consists
in manually defining the Region of Interest (ROI) and the
Object of Interest (OOI) in the first frame of the ultrasound
(US) video sequence. The OOI is the object for which the
user wants to obtain the motion trajectory. In the context
of our application, the urethra is the only tracked object of
interest. The ROI is defined as a rectangular region which
contains the OOI during the whole sequence.
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Fig. 3. Example of ROI and OOI, feature points detection, and feature points correspondence. In (a), the red rectangular area and the red curve represent
respectively the ROI and the OOI defined by the user in the first frame. In (b), the position of the detected feature points for a given frame are shown as
blue squares. In (c), the position of the detected feature points for the next frame are shown as yellow circles. In (d), the correspondences between the
feature points of the two frames are shown as yellow lines.

The automatic part of the proposed approach lies in the
dashed box of Fig. 2 and consists in four steps that are
performed on a frame by frame basis. For a given frame,
the first step consists in detecting feature points in the ROI.
Next, these feature points are matched with the ones that
were detected in the previous frame. The matched points are
then used to fit a model describing the motion in the area
covered by the ROI. Finally, the OOI in the previous frame
is transformed according to the motion model obtained in
the current frame. The following sections provide details for
all steps of the proposed approach.

A. Definition of the ROI and the OOI

The Object of Interest (OOI) is represented by a list of
ordered points representing the contour or a border of the
object in the first frame of the video sequence. The M points
specified by the user at frame n = 1 are denoted pm,n, where
m = 1, 2, . . . ,M . The ROI is defined by the user by defining
a rectangular area in the image. It is mostly used to speed
up the processing time and to limit the complexity of motion
model needed to represent the motion in the surrounding area
of the OOI. An example of defined ROI and OOI is shown
in Fig. 3(a). The rectangular red area represents the ROI, and
the red curve represents the OOI, which is the urethra.

B. Detection of the Feature Points

The detection and the description of the features points
is performed using SURF [6], which is a robust, scale and
rotation invariant feature points detector and descriptor. In
each frame n of a video sequence, there are Sn detected
feature points. The position in the frame n of each 2-
D feature point is denoted si,n, with i = 1, 2, . . . , Sn.
In this work, we use the extended version of the feature
point descriptor, which is a 128-D vector denoted di,n.
An example of detected feature points for two consecutive
frames is shown in Fig. 3(b) and 3(c). Only the position of
the feature points are shown in the frames (the size and the
orientation of the feature points is not used in this work).

C. Correspondence of the Feature Points

In order to match the feature points of two consecutive
frames n − 1 and n, the Euclidean distance is computed

between each pair of feature descriptors (di,n−1,dj,n):

zi,j = ‖di,n−1 − dj,n‖ , (1)

where i = 1, 2, . . . , Sn−1 and j = 1, 2, . . . , Sn. The set of
feature point pairs that are considered to correspond between
frames n− 1 and n is defined as

Cn :
{
(si,n−1, sj,n) |

zi,j
zi,k

< ρ, i = 1, 2, ..., Sn−1,

j = argmin
`

(zi,`), k = argmin
` 6=j

(zi,`),

` = 1, 2, ..., Sn

}
.

(2)

Thus, a feature point sj,n corresponds to the feature point
si,n−1 if and only if the descriptor dj,n is closer to the
descriptor di,n−1 than to any other descriptor in frame n,
and that the distance zi,k to the second closest descriptor
dk,n in frame n is at least ρ−1zi,j . This modified nearest
neighbor increases the robustness of the correspondence by
discarding uncertain matches. One assumption made in the
correspondence process is that the acquisition frame rate of
the US system is high enough so that the features remain
recognizable when the motion is fast in the ROI. At frame
n, there will be Cn pair of points in correspondence, with
c = 1, 2, . . . , Cn. The position of this feature points pair will
be referred to as (pc,qc) in the following, where pc is a point
in the previous frame n−1, and qc is the corresponding point
in frame n.

A typical case of feature points correspondence is shown
in Fig. 3(d). The feature points that were detected in the
previous and the current frame are shown in Fig. 3(b) and
3(c) respectively. The correspondence between two feature
points is presented as a yellow line segment joining the
position of the feature points. Here, a value of ρ = 0.8
was used by the correspondence procedure. Since the motion
between the two frames was slow, the line is mostly invisible
for a good feature points correspondence. The lines become
visible only for incorrect correspondences, while correct ones
show the feature points in partial or total overlap. One may
conclude that most feature point correspondences established
between the two shown frames are correct.
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D. Estimation of the Motion Transform

The motion between frame n − 1 and n is estimated by
fitting a model on the set of corresponding feature points.
The motion can be quite different in some parts of the
ROI, therefore a non-linear model of the motion in the ROI
is necessary. A good compromise between flexibility and
complexity is the bi-quadratic model. A bi-quadratic model
can be represented by a 2 × 6 matrix T that transforms a
2-D point u into a 2-D point v = Tf(u):

[
vx
vy

]
=

[
t11 t12 t13 t14 t15 t16
t21 t22 t23 t24 t25 t26

]

f1
f2
f3
f4
f5
f6

 (3)

where vx and vy are the x and y component of the point
v respectively. The vector function f(u) transforms a 2-D
points u into a 6-D vector defined as

f(u) =
[
f1 f2 f3 f4 f5 f6

]T
=
[
u2x u2y uxuy ux uy 1

]T
. (4)

A bi-quadratic model has 12 parameters and thus requires at
least six pairs of corresponding points to be fitted, as each
pair provides two constraints on the model parameters. Given
a number K > 6 of corresponding points vk and uk, k =
1, 2, . . . ,K, a bi-quadratic model can be fitted by solving a
linear equations system of the form Ax = b:

f(u1)
T 0T

0T f(u1)
T

...
...

f(uK)T 0T

0T f(uK)T




t11
t12
...
t25
t26

 =


v1

v2

...
vK−1
vK

 , (5)

where A is a 2K × 12 matrix, 0 are 6 × 1 vectors of
zeros, x is a 1 × 12 vector, and b is a 2K × 1 vector.
A least square solution can be obtained as x = A+b,
where A+ ≈ VD−10 UT. The matrices V and U are
obtained from the decomposition A = UDVT (Singular
Value Decomposition), and D−10 is a diagonal matrix where
the non-zero values are the inverse of the non-zero singular
values in the diagonal matrix D.

A robust fit for the bi-quadratic model at frame n is
obtained by performing an adaptive RANSAC procedure,
where the number of iterations is automatically determined
as described in [7]. For each RANSAC iteration i, a samples
set Si of six points pairs (pc,qc) is randomly chosen from
the set of feature point pairs Cn. These points pairs are
used to compute an estimated model transform matrix T̂.
A points pair (pc,qc) /∈ Si is added to the consensus set Ri

at iteration i if

‖qc − q′c‖ =
∥∥∥qc − T̂f(pc)

∥∥∥ ≤ α, (6)

that is, if the transformation error is less that α pixels. In
this paper, we use a value of α = 5.0 pixels. The sets Ri

Fig. 4. Examples of computed urethra motions for US video sequences
of three different subjects. The list of points representing the urethra is
coloured with a different colour at each frame, from yellow to red.

and Si at iteration i are kept only if the cardinality of Ri

is greater than the consensus sets that have been obtained
in the preceding iterations. Once the RANSAC algorithm
has converged, the transformation matrix Tn at frame n is
computed using all the points pairs in the best consensus set
along with the set of six points that led to it.

E. Transformation of the Object of Interest

The points list pm,n representing the OOI at frame n is
computed from the points list pm,n−1 at frame n− 1 using
the obtained bi-quadratic transform matrix Tn:

pm,n = Tnf(pm,n−1), m = 1, 2, . . . ,M. (7)

Since the bi-quadratic model encodes the motion (and thus
the deformation) that occurred in the ROI between frame
n−1 and n, the list of points representing the OOI in frame
n−1 will be transformed accordingly. Fig. 4 shows examples
of urethra motions that were computed by our algorithm.
The list of points representing the urethra is coloured with a
different colour, ranging from yellow to red, for each frame.
From the three examples, one may note the variability in
the shape of motion, which ranges from translational to a
twisting motion. This confirms the need of a non-linear, bi-
quadratic model for motion estimation.

III. EXPERIMENTAL RESULTS

The ultrasound video sequences were acquired during an
observational study that characterized the morphology and
function of the female pelvic floor in urinary incontinent
older women. Women 60 years and older were recruited and
included in the study, if they were independently ambulatory,
were incontinent and reported, at least, weekly symptoms of
stress urinary incontinence. Women were excluded if they
reported other conditions or were taking medications likely
to interfere with the study. An experienced pelvic floor phys-
iotherapist taught the women to perform pelvic contractions
correctly; their technique was confirmed by digital palpation.
Imaging used an Acuson Antares TM ultrasound machine
(Siemens, USA Inc) with a 5-3 MHz curvilinear probe.
During the imaging, the women were positioned in the supine
position with their knees bent. Trans-perineal 2D ultrasound
was used to study the kinematics of the urethra during pelvic
floor contractions, coughs, and valsalva maneuvers.

The proposed approach was tested over a set of 15
ultrasound sequences where the OOI was the urethra. The
frame resolution is 800×600, and the acquisition frame rate
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Fig. 5. Validation with ground truth for test sequence #4. In (a), the ground
truth urethra. In (b), result from the proposed approach. In (c), error statistics
on the test frames.
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Fig. 6. Validation with ground truth for test sequence #13. In (a), the
ground truth urethra. In (b), result from the proposed approach. In (c), error
statistics on the test frames.

varied between 20 and 25 fps. The urethra was manually
specified as a list of contiguous points in the first frame of
each sequence, along with the ROI.

In order to evaluate the effectiveness of the approach, lists
of contiguous representing the urethra were also manually
fitted for a subset of frames of the test sequences. This is how
the ground truth was generated for the validation of the pro-
posed tracking approach. The manual fitting was performed
on every tenth frame of the ultrasound sequences. However,
the number of the fitted points is not always the same, and
is thus different than the number of points specified in the
first frame. The lists of transformed points obtained with the
proposed approach were therefore sampled at each evaluated
frame in order to be able to compute a point-to-point error
with the ground truth points. The sampling process consists
in interpolating points on the transformed OOI curve that
will be compared to the ground truth points. It is based on
the relative position of each ground truth point on the ground
truth curve.

Figures 5 and 6 shows two examples where the point-to-
point error statistics were computed on each evaluated frame.
Table I presents the error statistics that were computed over
all evaluated frames of a video sequence. One can see that the
error is relatively small and it has a tendency to accumulate.
However, the cumulative tendency does not yield large values
for the absolute errors on frames with higher indexes. One
must also consider that it is relatively difficult for a human
evaluator to perform the manual fitting on low resolution
frames. Indeed, the OOI can be difficult to see and to track
in some frame where the motion is fast. This introduces a
level on uncertainty in the location of the ground truth points,

Sequence RMS Mean STD Median Min Max

1 13.45 12.26 5.53 14.11 0.31 18.29
2 9.31 8.50 3.78 9.08 1.14 16.80
3 5.75 5.03 2.79 4.64 0.95 12.88
4 7.15 6.55 2.87 7.42 0.11 11.91
5 6.40 5.94 2.38 5.78 1.19 10.84
6 4.82 4.09 2.55 3.43 0.40 11.60
7 4.96 4.45 2.18 4.18 0.58 9.66
8 4.36 3.85 2.04 3.38 0.91 8.22
9 5.97 5.41 2.53 5.73 0.78 10.26
10 10.53 8.40 6.35 7.08 0.09 22.85
11 5.08 4.59 2.18 4.51 0.48 8.70
12 7.70 7.07 3.05 7.56 0.49 13.51
13 6.34 5.93 2.26 5.79 0.87 11.02
14 6.33 6.07 1.82 5.72 3.17 11.51
15 11.72 11.36 2.85 11.43 5.47 16.23

TABLE I
ERROR STATISTICS OVER ALL FRAMES OF EACH OF THE 15 SEQUENCES.

which in turn may influence the magnitude of the error.

IV. CONCLUSIONS
This paper proposes a novel algorithm for tracking the mo-

tion of the urethra from trans-perineal ultrasound. The algo-
rithm is well-suited for video sequences of low resolution and
variable levels of blurriness introduced by anatomical mo-
tions of variable speed. The proposed tracking method iden-
tifies feature points using the SURF detector/descriptor. Inter-
frame correspondence is achieved using nearest-neighbor
matching in the feature space. The motion is estimated using
a non-linear bi-quadratic model, which adequately describes
the deformable motion of the urethra. Experimental results
are promising and show that our algorithm performs well.
Ongoing work focuses on extending our tracking approach
for other pelvic structures and salient points such as the
pelvic floor muscle and the ano-rectal junction. Future work
will integrate image-based measurements with force-based
measurements in order to provide a comprehensive assess-
ment of pelvic floor disorders in incontinent women.
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