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Abstract— Wireless capsule endoscopy (WCE) is a revolu-
tionary imaging technique that enables detailed inspection of
the interior of the whole gastrointestinal tract in a non-invasive
way. However, viewing WCE videos is a very time-consuming,
and labor intensive task for physicians. In this paper, we
propose an automatic method for bleeding detection in WCE
images. A novel series of descriptors which combine color
and spatial information is designed in a way that local and
global features are also incorporated together. And a kernel
based classification method using histogram intersection or chi-
square is deployed to verify the performance of the proposed
descriptors. Experiments demonstrate that the proposed kernel
based scheme is very effective in detecting bleeding patterns of
WCE images.

I. INTRODUCTION

Gastrointestinal (GI) diseases have been afflicting large
proportions of people all around the world for years. Howev-
er, the small intestine, as the longest portion of the digestive
tract, was technically difficult to be examined by convention-
al diagnostic procedures, such as push enteroscope, intraop-
erative enteroscopy and radiographic techniques [1]. Most
recently, wireless capsule endoscopy (WCE), which enabled
the non-invasive inspection of the whole small bowel [2],
showed superior performance in the diagnosis of small bowel
pathology, especially in the area of obscure GI bleeding
(OGIB) [1].

WCE is firstly swallowed by a patient, and then moves
by peristalsis. It captures 2 images per second and generates
about 55,000 images during the 8 hour’s examination. Final-
ly, the recorded images are downloaded to a work station,
and reviewed by a physician. However, the reading and
interpretation time is 40-60 min on average [3]. The time-
consuming task has become one of the major disadvantages
of WCE. Therefore, automatic bleeding detection of WCE
images is an urgent need.

Recently, many efforts have been dedicated toward the
automatic detection of bleeding patterns in WCE images,
since bleeding is a very significant symptom of GI diseases
and most of the causes of bleeding can be cured or controlled.
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The Suspected Blood Indicator (SBI), designed for the de-
tection of OGIB, was provided by Given Imaging. However,
the sensitivity and specificity of this tool were reported
to be unsatisfactory [4]. In [5], the author proposed an
unsupervised method using Expectation Maximization (EM)
clustering algorithm to automatically detect the bleeding
regions. Unfortunately, color ranges of the blood pixels
and the non-blood pixels overlapped and varied due to the
changing imaging environment in GI tract. The author in [6]
exploited a supervised method utilizing multilayer perceptron
neural network (MLP). Considering the illumination varia-
tion, chrominance moments, an invariant local color feature
in HSI color space, was extracted. However, the method only
showed the classification sensitivity and specificity of image
patches based on local color texture features, and the overall
classification performance based on image levels was not
clear.

In our study, a series of histogram representations of WCE
images are proposed. The novel descriptors incorporate color
and spatial information by combining illumination invariant
color histograms and spatial pyramids. Therefore, they are
robust to light variation within GI tract and invariant to trans-
lation and rotation. Two kinds of photometric invariant color
histograms (hue histogram and transformed color histogram)
are explored. A kernel based classification method using
histogram intersection kernel or chi-square kernel which
is especially suitable for histogram features is proposed.
Experimental results show that our method is a promising
diagnostic proposal and hence lead to wider acceptance of
WCE.

Our method is mainly inspired by the following research:
(1) the spatial pyramid representation of images proposed in
[7], and (2) the color invariant descriptors discussed in [8].

The rest of the paper is organized as follows. Section
II describes the details of the descriptors, termed PCIH
(Pyramid of Color Invariant Histograms), and the idea is
illustrated in Fig. 1. Section III explains the kernel based
SVM classifier. Experiments and results are then discussed
in Section IV. Finally, in Section V, conclusions are drawn.

II. FEATURE EXTRACTION

Bleeding detection in WCE videos must take into consid-
eration the following issues:

1) Bleeding patterns manifest themselves by red colors
different from colors of normal region. Intuitively, color
appearance is also the first and most important basis for
physicians to make diagnostic decisions.
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Fig. 1. Pyramid of transformed color histogram representation. The first
row: a bleeding image and grids for levels l = 0 to l = 2; below: histogram
representations for each level. The next two rows are for a non-bleeding
image.

2) Light intensity in digestive tract is time-varying, and
changes in the illumination can greatly affect the perfor-
mance of bleeding detection if the descriptors used are not
robust to these variations.

3) The shape and size of bleeding regions are uncertain.
Some are large enough to cover the whole image, while
others are only spots. So a combination of both global and
local feature is better than global or local feature alone. And
spatial information should also be considered.

A. Color Invariant Descriptor

Color histogram is an extremely simple way of repre-
senting the color distribution in an image which is suitable
for real-time computer aided systems. For digital images,
histogram is obtained by discretization of the image colors
into a number of bins, and counting the number of times
each color occurs in each bin. Histograms are invariant to
translation and rotation, and vary slowly with view angle
[9].

However, color histogram is highly sensitive to lighting
intensity changes. Therefore, to increase the photometric
invariance and the discriminative power, several color his-
tograms were studied [10]. We choose Hue Histogram and
Transformed Color Histogram which are both invariant to
light intensity change and shift. They are described as
follows:

1) Hue Histogram: In HSI color space, hue is known to be
invariant with respect to lighting geometry and specularities
[10]. However, hue is unstable at the achromatic axis (R =
G = B). As a result, a small perturbation of RGB values
might lead to a large jump in the hue values [11]. It was
found that the certainty of hue is inversely proportional to the
saturation. Therefore hue histogram can be more robust by
weighting each sample by its saturation [10]. The robust hue
histogram is invariant with respect to light intensity change
and shift [8].

2) Transformed Color Histogram: RGB histogram it-
self is sensitive to photometric variations. However, scale-
invariance and shift-invariance with respect to light intensity
can be achieved by normalizing the pixel value distribution
as follows: R′G′

B′

 =


R−µR

σR
G−µG

σG
B−µB

σB

 (1)

where µX is the mean and σX is the standard deviation
of the distribution in color channel X(X = R,G,B) over
the area under consideration [10].

B. Pyramid of Color Invariant Histogram - PCIH

The major drawback of color histogram representation
is that it discards all the spatial information of images,
which is a key attribute for image classification tasks. To
overcome this limitation, we introduce spatial information
and create the multi-resolution color histogram using the
spatial pyramid histogram approach proposed by Lazebnik
in [7]. In this paper, a similar scheme is designed, consisting
of color invariant histograms over each image subregions at
each resolution level - Pyramid of Color Invariant Histograms
(PCIH), including Pyramid of Hue Histograms (PHH), and
Pyramid of Transformed Color Histograms (PTCH). The
new descriptors have the advantage of combing global and
local features so that small bleeding regions will not be
misclassified.

The process of building PCIH is as follows: for a spatial
pyramid histogram with L levels, the grid at level l has 2l

cells along each dimension of images. The level 0 histogram
is first generated over the entire image and represented by
a vector of length M (M is the histogram bin size). For
level l, the image is divided into 4l equal sized sub-regions
and a level l histogram is computed over each region and
represented by a 4l × M dimensional vector. The process
is repeated by subdividing each image into increasingly
finer spatial grid and computing histograms in each region
until level L is reached. Finally, the appropriately weighted
histograms at all resolutions are concatenated, and the PCIH
descriptor of the entire image is formed to be a vector with
dimensionality M

∑L
l=0 4

l. For example, if we describe a
WCE image with L = 3 level and M = 36 bins, the resulting
vector has length 756.

H ′0 =
1

2L
H0, l = 0

H ′l =
1

2L−l+1
Hl, l > 0 (2)

H = (H ′0, H
′
1, . . . ,H

′
L)

where H ′l , l = 0, 1, . . . , L represents the illumination in-
variant color histogram of level l, H ′l represents the weighted
histogram of level l, and H is the vector form of PCIH.

Note that histograms at finer resolutions are given more
weight, because small bleeding regions are more likely to
be misclassified. Fig.1. shows that bleeding images have
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a similar PCIH representation and that this representation
differs from non-bleeding images.

III. SUPPORT VECTOR MACHINES

Support Vector machines (SVMs) is a kernel-based ma-
chine learning technique which has been widely used in real-
world classification problems in various domains. Due to its
strong theoretical foundation, good generalization capability,
and ability to find global classification solutions, SVMs is
usually preferred by many researchers over other classifica-
tion paradigms.

Given a binary classification problem:
{(x1, y1), (x2, y2), . . . , (xk, yk)}, where xi ∈ <n represents
an n-dimensional data point, and yi ∈ {−1, 1} represents the
corresponding class. The support vector machines require
the solution of the following optimization problem:

min
ω,b,ε

(
1

2
ω · ω + C

k∑
i=1

εi

)
subject to yi(ω · φ(xi) + b) ≥ 1− εi (3)

εi ≥ 0, i = 1, . . . , k

where εi is the slack variable which holds for misclassified
example, and C is the penalty parameter of the error term.
Furthermore, K(xi, xj) = φ(xi)

Tφ(xj) is called the kernel
function.

In this section, we will introduce two nonlinear Mercer
kernels for SVM that are found to be most suitable on
histogram representations.

A. Histogram Intersection Kernel

Histogram intersection proposed in [9] is an efficient way
of matching histograms, and has been proven to be a use-
ful kernel function in histogram based image classification
problems. It counts the number of pixels that fall in the same
bins in the two histograms h1 and h2, and is defined in the
following equation:

K(h1, h2) =

n∑
i=1

min(h1i , h
2
i ) (4)

Histogram intersection is extremely simple and easy to
implement.

B. Chi-Square Kernel

The chi-square kernel is derived from the chi-square
distribution. It is a simple and effective similarity measure
for histogram comparison. The chi-square kernels are defined
as follows:

K2(h1, h2) = 1−
n∑
i=1

(h1i − h2i )2
1
2 (h

1
i + h2i )

(5)

IV. EXPERIMENTS
Nine videos of different bleeding types were obtained from

Given Imaging (http://www.capsuleendoscopy.org/). Each
video is 20 seconds long. Since WCE images were collected
at 20 frames/s and neighboring frames varied slightly, images
256×256 were selected at an interval of greater than or equal
to three images depending on their variations. Also images
that are too dark or contain many visual contaminations were
removed. Finally, a representative subset of 560 examples
composing of 280 bleeding images and 280 non-bleeding
images was obtained from all the videos. The dataset was
split randomly into 1:1 proportion for training and testing,
respectively.

To evaluate the performance of the proposed algorithms,
the widely used libsvm software package [12] was selected.
We considered the histogram intersection kernel and chi-
square kernel as precomputed kernels for SVM training
and selected the optimal value for parameter C over the
range: log2C = {1, 2, . . . , 15}. We evaluate the performance
of a model trained on each C by using five-fold cross-
validation result on the training dataset. After finding the
optimal parameter, a new SVM model was trained by using
the complete training dataset on the parameter and the
performance of that model was tested on the remaining
testing partition.

For performance evaluation, sensitivity, specificity, accu-
racy and error rate, widely used in medical diagnostics, were
investigated in the experiment.
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Fig. 2. (a), (b) shows the performance for PHH using chi-square
kernel and histogram intersection kernel respectively; (c), (d) shows the
performance for PTCH using chi-square kernel and histogram intersection
kernel respectively.

Fig. 2 shows that if we change the number of histogram
bins M in a range [18 36 54] for hue histogram and
[15 30 45] for transformed color histogram, the optimal
results are obtained at M = 36 for PHH, and M = 15
for PTCH. Note that the classification performance is not
very sensitive to the number of histogram bins.

For PHH, results improve dramatically as pyramid level
increase from l = 0 to l = 2. For PTCH, the performance
is optimal at l = 1. This means that color and spatial
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Fig. 3. A comparison of performance for PHH descriptors using chi-square
kernel and histogram intersection kernel.

Fig. 4. A comparison of performance for PTCH descriptors using chi-
square kernel and histogram intersection kernel.

information fusion exhibits a statistically significant benefit.
However, the performance for PTCH drops at the highest
level l = 2. This indicates that at the higher levels regions
are smaller and feature lengths are much longer, and the
global information contributes less to the overall classifica-
tion performance.

Fig. 3 and Fig. 4 show that the most suitable kernel
for PHH is histogram intersection, while the choice of the
optimal kernel for PTCH depends on specific conditions.
Both kernels can achieve satisfactory results.

Finally, TABLE I compares the classification perfor-
mances of PHH and PTCH using three different kernels.
Obviously, chi-square kernel and histogram intersection k-
ernel perform better than Radial Basis Function (RBF) for

TABLE I
CLASSIFICATION PERFORMANCES OF PHH AND PTCH USING THREE

DIFFERENT KERNELS

Kernel Average
Accuracy

Average
Sensitivity

Average
Specificity

PHH
Chi-square 94.1% 94.5% 93.7%
Histogram
intersection 95.6% 96.0% 94.6%

RBF 89.6% 96.3% 82.9%

PTCH
Chi-square 97.8% 97.7% 97.9%
Histogram
intersection 97.9% 97.8% 98.0%

RBF 96.6% 97.9% 95.4%

the proposed features, and PTCH outperforms PHH.

V. CONCLUSIONS

We have introduced a new series of descriptors PCIH
(including PHH and PTCH), which incorporate color and
spatial information of WCE images, and are robust to illu-
mination variation. The combination of spatial pyramids and
robust hue histogram increases accuracy by about 8%, and
the combination of spatial pyramids and transformed color
histograms achieves about 1% improvement (compared to
single level histograms). This demonstrates that color and
spatial information fusion is significant for bleeding detection
in WCE images. Local and Global feature combined together
also outperforms either one. The performance of SVM clas-
sifier using histogram intersection and chi-square kernel are
both effective to detect bleeding patterns. Therefore, proper
selection of numbers of histogram bins, pyramid levels and
SVM kernels are all important for good performances. To
sum up, the proposed scheme is very effective for bleeding
detection. In the future, our work will extend to detecting
other diseases in GI tract such as tumor and ulcer.
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