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Abstract— A mathematical framework for estimation of the
conductivity map of the retina is presented. The problem is
formulated and solved in two-dimensional space considering
hypothetical inhomogeneity in the conductivity profile at each
layer of the retina in x and y directions. Finite element
analysis is used to solve the equation of continuity in steady
state to simulate voltage measurements as well as estimate
the conductivity map. The results of simulated noisy data for
an inhomogeneous retina layer and the fovea, which has a
more complicated geometry, are presented. The error study
of the estimated conductivity map shows that the error for an
inhomogeneous conductivity profile is approximately 2% and
the error for calculating the fovea conductivity map is just
above 8%. This method can be extended to three-dimensions
and can also be used to measure the impedance of different
layers of the retina for alternating currents.

I. INTRODUCTION

Vision restoration for people suffering from Retinitis Pig-
mentosa (RP) and Age-related Macular Degeneration (AMD)
may be achieved by using visual neuro-prosthesis de-
vices [1], [2]. In these types of devices, the retina is elec-
trically stimulated to generate a spot of light in a patient’s
visual field referred to as aphosphene[3].

The conductivity (σ) of the retina at different layers is
important in designing an optimal stimulation pattern as well
as optimisation of the electrode geometry, such as diameter,
penetration depth, and pitch factor. In general, the retina
conductivity profile depends on location as well as direction
of measurements, meaning that the retina is inhomogeneous
and anisotropic [4]. Inhomogeneity and anisotropy of the
retinal tissue raise difficulties when attempting to measure
the conductivity of the retina.

The electrical conductivity variations within the retinasof
different animal species have been explored through experi-
ments. Karwoskiet al. [4] have detailed how the resistance of
the retinal layers of a frog vary. In [5], the Current Source-
Density (CSD) method is used to determine the resistivity
profile of a New-Zealand White Rabbit retina.

While resistivity depth profiles of retinas have been ob-
tained through experiments previously, they have been solved
for under the assumption that the retina is comprised of
layers that are homogeneous within themselves [6], [7].

Kasi et al. [8] have developed a technique for measuring
the resistivity map of a retina using bipolar microelectrodes.
They have employed the peak resistivity frequency method
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to find the resistivity map of rat and embryonic chick
retinas. Microelectrodes provide more localised and stable
measurements compared to the classical methods. Moreover,
the experimental setup is simpler in this case.

The objective of this paper is to design a mathematical
framework to calculate the conductivity of retina based on
discrete measurements of voltage in the tissue. As there is no
gold-standard measurement available for conductivity map
and associated voltages, we generate the synthetic data based
on a given conductivity profile to be able to measure the
performance of the proposed method quantitatively. To this
end, the equation of continuity [9] is expanded in Cartesian
coordinates and is solved subsequently to simulate a voltage
map on an object. In the second step, the simulated data and
their partial derivatives are used as the coefficients of the
equation of continuity to estimate the conductivity map of
the object.

In Section II, the theory of the problem and the two key
steps in our approach are formulated. Simulation results for
an inhomogeneous tissue and fovea with a more complicated
geometry that, to the best of our knowledge, have not been
addressed previously are presented in Section III. The param-
eters affecting the outcome of the method and practical issues
associated with the problem are addressed in Section IV.
Conclusions and future avenues for extension of this work
are described in Section V.

II. THEORY

Consider a tissue which can be represented by a connected
setΩ ⊂ R

n, wheren is an integer representing the spatial
dimension. The equation of continuity in steady state for this
object is represented by

∇ · (σ(r)∇v(r)) = 0, r ∈ Ω, (1)

with proper boundary conditions on the surface of the tissue,
∂Ω.

In order to investigate the accuracy of the method de-
veloped here, we first assume that the conductivity map is
given and then simulate the voltage map,v(r), based on
Equation (1). In the second step, Equation (1) is solved for
σ(r) using the voltage map calculated in first step. We refer
to the first step as theforward problemand the second step
as thebackward problemthroughout.

The procedures of the forward and backward problems
are represented in Figure 1. As shown in Figure 1(a), the
geometry and boundary conditions are determined based
on the given conductivity map to set-up the problem. For
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Fig. 1. The steps of the forward and backward problem.

nontrivial cases, where a closed form solution to Equation (1)
does not exist, the Finite Element Method (FEM) is adopted
to calculate the voltage map,v(r), on the tissue,Ω, numeri-
cally. In practice, noise exists in all measurements, thus we
consider additive noise in our simulations to give the noisy
voltage map,̂v(r).

The steps for solving the backward problem, which in
practice is the main problem to be solved, are shown in
Figure 1(b). The first step in finding the conductivity map
is to remove noise from the data. The cleaned data can be
interpolated to make the voltage data smooth over a grid
that can be used to solve the partial differential equation.To
find the conductivity map, the geometry should be defined as
similarly as possible to geometry of the tissue. After setting
boundary conditions, the coefficients of Equation (1) are
calculated numerically and this equation is solved by FEM
to determine an estimate of the conductivity map,σ̂(r).

The main objective in solving the problem is to minimise
the difference between the estimated map and the original
one. In this paper, without loss of generality, we formulate
and solve the forward problem as well as the backward
problem in two-dimensional space,n = 2.

A. Forward Problem Formulation

The objective in the forward problem is to calculate the
voltage values on the object given the conductivity map,
σ(x, y). Equation (1), which is the main equation governing
the relationship between voltage and conductivity can be
expanded in Cartesian coordinates, which results in

σ(x, y)

(

∂2v

∂x2
+

∂2v

∂y2

)

+
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∂v

∂x
+
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∂y

∂v

∂y
= 0,

(2)

with the boundary conditions

v(y = y0) = 0, v(y = y1) = V0,

∂v

∂x

∣

∣

∣

x=x0

= 0,
∂v

∂x

∣

∣

∣

x=x1

= 0. (3)

Equation (2), which is a second order linear Partial Dif-
ferential Equation (PDE) in terms of the dependent variable
v, is solved to find the voltage map on the tissue.

B. Backward Problem Formulation

In the backward problem, the conductivity map is un-
known and is estimated from the given voltage map and
proper boundary conditions. The results obtained from the
forward problem are used as the input in this case. Equa-
tion (2) may be rewritten in the following form

a(x, y)
∂σ̂

∂x
+ b(x, y)

∂σ̂

∂y
+ c(x, y)σ̂(x, y) = 0, (4)

with the boundary conditions

σ̂(x0, y) = σx0
, σ̂(x, y = y0) = σy0

, (5)

where

a(x, y) =
∂v̂(x, y)

∂x
, (6a)

b(x, y) =
∂v̂(x, y)

∂y
, (6b)

c(x, y) =
∂2v̂(x, y)

∂x2
+

∂2v̂(x, y)

∂y2
, (6c)

in which v̂(x, y) represents the noisy voltage values andσ̂

is an estimate of the original conductivity map to be deter-
mined. Equation (4) represents a first order linear PDE [10],
[11]. It is worth mentioning that when the coefficients
of Equation (4) are discontinuous, the error of numerical
solutions to the problem can be unpredictably large [12].

C. Simulation Methods

Simulation of the forward and backward problems is
conducted in finite element analysis software, COMSOL 4.1.
In our simulations, we consider a Gaussian distribution for
the additive noise such that the resultant Signal-to-Noise
Ratio (SNR) is 20dB. In simulating the voltage map for
the forward problem, theElectric Current (ec)model in the
AC/DC module is selected. TheCoefficient Form PDE (c)
model in theMathematicsmodule is adopted to solve the
backward problem. Since no dynamics is involved in the
backward or forward problems,stationary study type is
chosen to solve the relevant partial differential equations. In
both cases, COMSOL internal analytic functions are used to
define the geometry as well as the desired conductivity map.

In solving the backward problem, a two-dimensional in-
terpolation function is adopted to introduce coefficients of
Equation (4) in matrix form to COMSOL. In all simulations,
Direct PARDISOwith its default parameters is used.

III. SIMULATION RESULTS

In order to test the performance of the proposed method,
we simulate the equation of continuity for an inhomogeneous
conductivity and a nontrivial geometry.

A. Example 1: Inhomogeneous Layer

We first consider the case of a single inhomogeneous layer.
We assume the conductivity inside the layer varies in both the
x andy directions. Since conductivity does not alter abruptly
inside a layer, we consider a conductivity map of the form

σ(x, y) = 1 + 0.1(sin 5× 104x+ sin 105y), (7)
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which changes considerably in two-dimensions as repre-
sented in Figure 2. The objective is to estimateσ(x, y) using
the method described in Section II. To this end, we apply
a constant electric field in they direction with V0 = 1V
and we assume that the sides of the geometry are insulated.
The noisy voltage map generated by solving the forward
problem is shown in Figure 3. The estimated conductivity
map through solving Equation (4) is represented in Figure 4.
The maximum error of the solution is below 2% as shown
in Figure 5.
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Fig. 2. The given inhomogeneous conductivity map describedby Equa-
tion (7). We assume that tissue size is 200µm×100µm. The color map
indicates the magnitude of the conductivity.
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Fig. 3. The voltage conductivity map across the object shownin Figure 2.
A constant field is applied in they direction with V(y = -100µm)=0 and
V(y = -100µm)=V0=1V. The sides of the geometry atx = ±100µm are
considered to be insulated. The color map represents the voltage magnitude
at each point.

x (µ m)

y 
(µ

 m
)

 

 

−100 −50 0 50

−40

−20

0

20

40

0.8

0.9

1

1.1

1.2

Fig. 4. The estimated conductivity map for Example 1 calculated by
solving the backward problem. The color map indicates the magnitude of
the estimated conductivity at different points.

B. Example 2: Fovea

We now solve the problem for a typical fovea, which has a
more complicated geometry. We consider one layer of fovea
with σf = 0.5S/m in our simulations that can be extended
to more layers. We approximate the geometry of the fovea
with a Gaussian function and we assume that the tissue is
surrounded by saline withσs = 2S/m, which will be used
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Fig. 5. The percentage error between the estimated conductivity map
calculated by solving Equation (4) and the given conductivity map in
Example 1.
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Fig. 6. The conductivity map of a one layer fovea with maximumσf =

0.5S/m presented in Example 2. The geometry of fovea is approximated by
a Gaussian function and it is assumed that the tissue is located in saline
with σs = 2S/m.

as the boundary conditions. The given conductivity map and
the resultant voltage map are shown in Figures 6 and 7,
respectively. The estimated conductivity map and the error
of calculation in the presence of noise are represented by
Figures 8 and 9, respectively. The maximum error of the
conductivity map estimation in this case is approximately
8% which is larger than the error of Example 1.

IV. DISCUSSION

The results presented in this paper clearly show that
the proposed theoretical framework generates a potentially
satisfactory conductivity map for given noisy voltage mea-
surements. However, it should be noted that we have assumed
the electrode tissue impedance [8], [13] and the electrode
tissue gap [14] is the same at all points and therefore could
be neglected in our calculations. Other important practical
issues are the damage caused by each electrode to the retina
and the relative movement between the electrode and the
tissue at the time of measurement, which can affect the
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Fig. 7. The voltage conductivity map across the fovea represented by
Figure 6. A constant field is applied in they direction with V(y = -
150µm)=0 and V(y = 150µm)=V0=1V. The sides of the geometry at
x = ±1000µm are considered to be insulated. The color map represents
the voltage magnitude at each point.
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Fig. 8. The estimated conductivity map of the fovea presented in
Example 2. The calculated map is found by solving the backward problem.
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Fig. 9. The percentage error between the estimated conductivity map of
the fovea calculated by solving Equation (4) and the given conductivity map
in Example 2.

results unpredictably.

A. Effect of Noise on Estimated Conductivity Map

Because first and second derivatives are used to solve
the conductivity map when the tissue is considered to be
inhomogeneous or when it has a complicated geometry, it
is expected that the accuracy of the method increases con-
siderably along with the increase in SNR of measurements.
The simulations for the examples presented in Section III
have been repeated for different values of SNR. Figure 10
shows the maximum error at different SNR values in the
conductivity map calculation, which infers that at low SNRs
the error is very high as expected. Moreover, it is obvious that
error in estimating the conductivity map of fovea is higher
than the inhomogeneous case.

V. CONCLUSIONS

In this paper, a theoretical framework for calculating
the conductivity map of the retina was developed. The
inhomogeneity of the tissue in two-dimension as well as a

5 10 15 20 25 30 35
0

10

20

30

40

50

SNR(dB)

E
rr

or
 (

%
)

 

 

Example 1
Example 2

Fig. 10. The percentage error in estimation of the conductivity map versus
SNR of voltage measurements for the examples presented in Section III.

complicated geometry were taken into account and it was
shown that through finite element analysis, estimating the
conductivity map of the retina with small error is achievable.
Since inhomogeneity of retina affects the outcome of electri-
cal stimulation of neural tissue, the method developed here
can help researchers to design optimal stimulation patterns
that can improve the quality of visual prostheses.

The method presented here will be extended to three
dimensions and anisotropy of the tissue will be taken into
account as well. Moreover, the problem will be revisited for
sinusoidal stimulations that leads to calculation of the retina
impedance at different frequencies which is an active area of
research.
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