

Abstract— People with movement impairment often cannot
move with the range, speed, or acceleration required to play an
off-the-shelf video game. This paper describes a smart
calibration algorithm designed to facilitate video game play by
people with movement impairment. The algorithm
continuously adapts the calibration of the gaming input device
by comparing the maximum range of motion measured in
previous time periods, then adjusting the current required
range of motion based on their difference. In several
experiments with simple acceleration-based video games using
a Nintendo Wiimote, we show that the algorithm adapts the
calibration to allow healthy users to play the game with their
full available range of acceleration without need for a special
calibration protocol. Importantly, the algorithm described here
can be used without altering the game software by inserting a
hardware or software module between the gaming input device
and the game console. Thus, the algorithm can be used with
off-the-shelf video games without altering their source code.

I. INTRODUCTION
ovement impairment arises due to neural injuries such
as stroke, spinal cord injury, traumatic brain injury,
and cerebral palsy, or due to progressive diseases such

as multiple sclerosis, ALS, and Parkinson’s disease [1].
Aging also reduces muscle strength [2,3], coordination [4],
and range of motion (ROM) [5]. As a result, people with
movement impairment often have difficulty playing video
games, particularly if they cannot create the range, speed, or
acceleration of movement necessary to reach movement
targets defined by the game. This difficulty results in
decreased access to video games for people with a
movement impairment, which limits entertainment options
and reduces social participation. Further, many rehabilitation
clinics are interested in using video game consoles such as
the Nintendo Wii [6,7] to motivate movement exercise. If a
patient’s movement impairment is too severe, then he or she
cannot exercise by playing standard video games. In

Manuscript received April 15, 2011. This work was supported in part by
the Balsells Fellowship program, the NIDRR Rehabilitation Engineering
Research Center on Rehabilitation Robotics and Telemanipulation,
H133E070013, NIH-R01HD062744-01 from NCMRR and Grant Number
UL1 RR031985 from the National Center for Research Resources (NCRR),
a component of the National Institutes of Health (NIH) and the NIH
Roadmap for Medical Research.

Sergi Perez is with the Mechanical and Aerospace Department,
University of California, Irvine CA 92697 USA (e-mail: sergi.perez@
uci.edu).

Raul Benitez is with the Automatic Control Department, Universitat
Politecnica de Catalunya, Comte Urgell 187 08036 Barcelona (e-mail:
raul.benitez@upc.edu). R. Benitez acknowledges support from the Spanish
Ministry of Education (MICINN) through project DPI 2009-06999.

David J. Reinkensmeyer is with the Departments of Mechanical and
Aerospace, and Anatomy and Neurobiology University of California, Irvine
CA 92697 USA (phone: (949) 824 5218, e-mail: dreinken@uci.edu).

addition, as a patient’s level of movement impairment
changes during movement recovery, it would be desirable to
have a game that automatically adapts to new movement
ability, challenging the patient to improve further.

Previous work on developing games for movement
training for people with a motor impairment have typically
taken the approach of developing custom games that require
a periodic calibration; the calibration procedure typically
requires the participation of a supervising rehabilitation
therapist [8,9]. The objective of the project was to develop
an algorithm that continuously estimates the range of motion
of a player given four design constraints: the algorithm
receives no feedback from the game, the distribution of
targets is unknown, the initial range of motion is unknown,
and the range of motion can change during game play. Such
an algorithm could be used without need for special
calibration procedures or supervision from a rehabilitation
therapist. It could also be used with existing video games
without modifying their source code.

 To satisfy these design constraints, we developed an
algorithm that continuously adapts the calibration based on
the difference in range of motion measured in previous time
periods. We first describe the algorithm, then present
experimental results that demonstrate that the algorithm
allows users to play a simple acceleration-driven game with
their full available range of acceleration.

II. METHODS

A. Calibration Algorithm
We consider first a simple one-dimensional game that uses

the Wiimote, an acceleration based sensor. The user must
shoot an arrow to a target. The initial velocity of the arrow
depends on the maximum acceleration of the z axis of the
Wiimote, recorded during a fixed window of time of
duration T, which begins after the vertical acceleration of the
Wiimote passes a small threshold. The arrow is assumed to
move with the dynamics of a point mass in earth’s gravity
field. The game presents multiple targets to the user at
different positions of the screen.

Let ݕ א ௬ܦ describe the input acceleration to the game and
let ݔ א .௫ describe the sensor value the user generates (e.gܦ
in our game, the maximum acceleration measured in a
window of ܶ seconds after the sensor reading exceeds the
threshold ݔ௧௛௥௘௦), with: ܦ௬ ൌ ሼݕ א Թ: 0 ൏ ݕ ൏ ௫ܦ ሽܩ ൌ ሼݔ א Թ: 0 ൏ ݔ ൏ ܴሽ

 is the maximum input acceleration that the game can ܩ (1)
demand and R is the maximum input value that the user can
create (e.g. maximum acceleration the user can create with a

Smart Calibration for Video Game Play by People with a Movement
Impairment

Sergi Perez, Raul Benitez, Member, IEEE, David J. Reinkensmeyer, Member, IEEE

M

6741

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

U.S. Government work not protected by U.S. copyright

Wiimote). In many games, ܩ will be equ
game requires the user to saturate
accelerometer to hit a very high target
maximum acceleration the accelerometer
other cases it may not. For example, if we
to require fine, slow control of the input de
be less than the maximum value the senso
salient point is that every video game is des
range of sensor values. The algorithm
requires knowledge of this range. Note that
measured by recording the sensor values (
gaming device) during normal game play fo

Now consider a user who cannot genera
that are large enough to play the game, such
user generates satisfy ݔ ൑ ܴ ൏ This .ܩ
limited success in playing the game. To a
intercept the output of the sensor, scale it
parameter ܽሾ݅ሿ and then send it to the gam
can play the game successfully, as seen
parameter ݅ refers to the ݅௧௛ iteration of th
the ݅௧௛ update of ܽ) where we define an i
every ܰ throws of the arrow to the targ
between ݔ and ݕ is given by the linea݂ሺݔሻ: ௫ܦ ՜ ݕ :௬, whereܦ ൌ ݂ሺݔሻ ൌ ܽሾ݅ሿ ݔ

If we know the maximum acceleration
create then the calibration coefficient shܽ ൌ We assume that we don’t know .ܴ/ܩ
of the algorithm is to find the estimate ෠ܴ ,
that the maximum acceleration that the use
scaled to the maximum acceleration that th
for successful play: ܩ ൌ ොܽ ෠ܴ

We put the caret over a variable to disting
from the real value.

Fig. 1. Distribution of inputs to the game for an imp
no scaling, the subject can only reach those targets ሾ0 ܴሿ. B. Using a linear transformation we can mod
inputs to the game and allow the injured subject to use
game requires, ݕ א ሾ0 ܩሿ.

One strategy for finding ොܽ is to ask the
quickly as possible to measure ෠ܴ . Then we
However, this strategy requires a sp
procedure that is independent of the game.
user’s movement ability changes, due to
fatigue or disease progression or recovery
procedure must be performed again. Instead
strategy that continually estimates ෠ܴ du
without requiring a special calibration. This
to calculate the current value of the calibr
using ොܽ ൌ /ܩ ෠ܴ and therefore is the maxim

ual to ܴ (e.g. our
e the Wiimote

by creating the
can read) but in
design our game

evice, then ܩ may
or can read. The
signed to expect a

m presented here
this range can be

(i.e. output of the
or any game.
ate sensor values
h that all the ݔ the

user will have
assist the user we
t by a calibration

me so that the user
n in Fig. 1. The
he algorithm (i.e.
iteration to occur
get. The relation
ar transformation

(2)
that the user can
hould be set to ܴ; thus, the goal
and find ොܽ such

er can generate is
he game requests

(3)
guish the estimate

paired subject. A. With

that are in the range
dify the distribution of
e the full ROM that the

user to move as
choose ොܽ ൌ /ܩ ෠ܴ .
ecial calibration
 Moreover, if the
 motor learning,
y, the calibration
d, we developed a
uring game play
s estimate is used
ration coefficient

mum sensor value

demanded by the game at the ith it
We expect the maximum value of
increase as ෠ܴ increases until ෠ܴ ൌ ܴ
user will not be able to reach those t
as it is shown in the Fig. 1.

The algorithm for finding this esti
1) The initial estimation of ෠ܴ is ܩ
2) For each movement the user m

to the algorithm (i.e. in our game th
measured in a window of ܶ seconds
exceeds the threshold ݔ௧௛௥௘௦).

3) If the number of ݔ received
movements made) in the current iter
the algorithm uses the previous esti
to scale and sends ݕ ൌ ොܽሾ݅ሿݔ to the g

4) If the number of ݔ received i
equals N the algorithm calculat
maximum value of ݔ during the o
throws of the arrow to the target, in ݔሺேሻ ൌ max௜ேାଵழ௡ஸሺ௜ାଵሻே ݔ

Let ܬ be a cost function defined byܬ൫ ෠ܴሾ݅ ൅ 1ሿ൯ ൌ ሺܭଵ/2ሻ൫ ሺேሻሾ݅ሿݔ െെܭଶ ෠ܴሾ݅ ൅ 1ሿ | ሺேሻሾ݅ሿݔ െ ሺேሻݔ
Now, the algorithm estimates ෠ܴ

the ෠ܴሾ݅ ൅ 1ሿ that minimizes (5)
algorithm is set using ොܽ ൌ ሺ1 ൅ ܿሻ
as the “challenge factor”. The pu
factor is to provide the software de
that allows precise control over
challenged, because c > 0 requires
range of motion than the ongoing
range of motion.

To see the rationale for the cos
condition ොܽ ൏ ܽ. In this case, the ra
by the game from the user will be
motion of the user (෠ܴ ൐ ܴ). To see
case ෠ܴ ൌ /ܩ ොܽ ൐ ܽ/ ܩ ൌ ܴ. So ݔሺேሻሾ݅ െ 1ሿ ൌ ܴ. In this case, (5) redܬ൫ ෠ܴሾ݅ ൅ 1ሿ൯ ൌ ሺܭଵ/2ሻ൫ ሺேሻሾ݅ሿݔ െ
If we minimize (6) then our estim
(෠ܴ ൌ ሺேሻሾ݅ሿݔ ൌ ܴሻ. Now consider w
we expect that the user achieve
demanded by the game, so ݔሺேሻ ൌ ܴ
(5) tries to make ෠ܴ ൌ ܴ; in other
user’s range of motion to be the m
by the user in the previous iteration.
the user can generate a greater rang
currently measuring. Thus, the se
function is introduced. This term de෠ܴሾ݅ ൅ 1ሿ increases, and therefore ෠ܴሾ݅ ൅ 1ሿ to move toward increasing
influence of this second term decre
less between iterations, which we

eration of the algorithm.
f ݔ used in the game to ܴ. When this happens the
targets that require ݔ ൐ ܴ

imate is as follows:
.

makes, the sensor sends ݔ
he maximum acceleration
s after the sensor reading

d (i.e. number of game
ration ݅ is smaller than N
imation ෠ܴሾ݅ሿ and thus ොܽ
game.
in the current iteration ݅
tes ݔሺேሻ which is the
observation period of N
our game. ݔ௡ (4)
y: െ ෠ܴሾ݅ ൅ 1ሿ ൯ଶ

 ሻሾ݅ െ 1ሿ| (5) ሾ݅ ൅ 1ሿ by searching for
. Then the calibration ܩ/ ෠ܴ, where ܿ is defined
urpose of the challenge
esigner with a parameter
how much the user is

s the user to use greater
g estimate of the actual

st function, consider the
nge of motion demanded
greater than the range of
this, we note that in this
we expect ݔሺேሻሾ݅ሿ ൌ

duces to: െ ෠ܴሾ݅ ൅ 1ሿ ൯ଶ
 (6)

mate ෠ܴ will be accurate
when ොܽ ൐ ܽ. In this case,
s the range of motion ෠ܴ. Then the first term of
words, it estimates the

maximum range achieved
. However, we know that
ge of motion than we are
econd term of the cost
ecreases the total cost as

causes the search for
g values of ෠ܴሾ݅ ൅ 1ሿ. The
eases when ݔሺேሻ changes
expect to happen when

6742

ොܽ ൏ ܽ. We expect this to happen when ෠ܴ ൐ ܴ since the
overestimation of ܴ implies that the user has to create higher
values of ݔ with more frequency and thus we can expect ݔሺேሻሾ݅ሿ ؆ ሺேሻሾ݅ݔ െ 1ሿ.

Finding the ෠ܴሾ݅ ൅ 1ሿ that minimizes the cost function is a
convex optimization problem. The minimum condition for ෠ܴሾ݅ ൅ 1ሿ can be ensured by accomplishing the Second Order
Sufficient Conditions, given by (7). ܬ׏൫ ෠ܴሾ݅ ൅ 1ሿ൯ ൌ ൫ܬଶ׏ 0 ෠ܴሾ݅ ൅ 1ሿ൯ ൐ 0

(7)

We solved (7) to find the ෠ܴሾ݅ ൅ 1ሿ (8) that will be a
minimum if ܭଵ ൐ 0: ෠ܴሾ݅ ൅ 1ሿ ൌ ሺேሻሾ݅ሿݔ ൅ ሺேሻሾ݅ሿݔଶหܭ/ଵܭ െ ሺேሻሾ݅ݔ െ 1ሿห (8)

Equation 8 thus serves as the update law for the estimate
of the range of motion of the user. As can be seen, the
estimated range of motion is the maximum acceleration
achieved in the previous observation period (i.e. ݔሺேሻሾ݅ሿሻ,
incremented by the difference in measurements in the past
two observation periods (ݔሺேሻሾ݅ሿ ܽ݊݀ ݔሺேሻሾ݅ െ 1ሿ).

B. Experiment Design
In order to evaluate the algorithm we developed the arrow

shooting game described previously, using the Wiimote as
the input device to play the game. Since this accelerometer
(ADXL330) can be easily saturated by a non-impaired
subject, we limited the accelerations applied to the Wiimote
by attaching it to a lever. The users played the game by
pushing on one end of the lever at a distance of 63 cm from
the pivot. The Wiimote was attached 8 cm from the pivot on
the same side as the lever. Thus, the acceleration measured
by the Wiimote was approximately 50% of the maximum
acceleration the Wiimote can sense.

We performed two experiments. In a first experiment we
measured the evolution of the estimation of the range of
motion during game play given a fixed distribution of
targets. The data for this experiment was collected from 7
non-impaired subjects playing the Wiimote game throwing
20 arrows. We used the calibration algorithm with ܭଵ ൌ3, ܭଶ ൌ 1, ܿ ൌ 0.2 and ܰ ൌ 4. The game shows the targets
in 6 different positions: ܻ ൌ ሾ15 30 46 61 76 92ሿ, with a
frequency for each position given by the probability mass
function ௧݂ ൌ ሾ1 2 3 3 4 4 ሿ/17. Before starting the games
we asked every user to create the maximum acceleration
possible to determine the real ܴ. This value was not used in
the algorithm, but we used it to analyze how well the
algorithm converged on R.

In a second experiment, we analyzed how the convergence
properties of the algorithm depended on the distribution of
game targets. Let ݕ௧ be the required input to the game to
precisely reach a target and let ݔ௧ ൌ /௧ݕ ොܽ . If most of the
targets are distributed at ݕ௧ ا received during game ݔ the ,ܩ
play will be smaller than the real ܴof the user, and ෠ܴ will be
underestimated. By modifying ܰ we increase the number of ݔ used for every iteration of the algorithm, and thus we
increase the chances of receiving a ݔሺ௡ ሻ ؆ ෠ܴ.

4 subjects played the game by throwing 40 arrows to 40
targets. The position of the targets was calculated using 4

different distributions of ݕ௧ that are shown in the Fig. 2. For
every distribution and subject we used 6 different values of ܰ ൌ ሾ1 2 3 4 5 6ሿ. We used the calibration algorithm with ܭଵ ൌ ଶܭ ,3 ൌ 1, ܿ ൌ 0.2. The first 3 distributions were
artificially generated to test the algorithm while the last
distribution was calculated by playing successfully the game
Wiisport golf, to add a representative distribution of a game.

We calculated the means of the error on the estimation (9)
for the 4 subjects: ݁ ൌ ෍ หܴ െ ෠ܴห௫ (9)

Fig. 2. Distributions of ݕ௧ used on the first experiment. All the distributions
are discrete. In all games the targets are placed in 5 possible positions that
correspond to 20-40-60-80-100% of ܩ.

Note that for the experiments we considered the worst
scenario and the game allows ݕ ൐ ,With this inequality .ܩ
when ෠ܴ ൏ ܴ and the user creates an acceleration ݔ ൐ ෠ܴ he
will see the arrow surpassing the position of the higher target
and will reduce ݔ on future throws. Since ݔ is reduced we
expect ݔሺ௡ሻ to be smaller than ܴ and the error of the
estimator will increase. By limiting the maximum value ݕ that we send to the game to ܩ we can avoid this problem.

III. RESULTS

A. Experiment 1: Testing Convergence of Algorithm
Fig. 3 shows accelerations measured during a game of

twenty throws for one subject. The algorithm started with
the initial estimate of ෠ܴ ൌ and thus during the first 4 ,ܩ
throws it was difficult for the subject to hit the targets as he
needs to create ݔ௧ ൐ ܴ to reach some targets. Since he
cannot create those accelerations he creates ݔ ؆ ܴ. After an
observation period of N = 4 throws, the algorithm calculated
a new value for ෠ܴ using the first 4 values of ݔ it received.
Now ෠ܴ is reduced and closer to ܴ and thus the ݔ௧ required
are smaller, allowing the user to be able to reach more
targets.

Fig. 4 shows the mean of the errors on the estimation for
the 7 subjects from this experiment. The mean of the means
of the errors is -0.0137, indicating a global behavior towards
a 0 error estimation given a distribution of targets
representative of ܩ.

B. Experiment 2: Effect of Target Distribution
In the second experiment, we examined how the target

distribution affected the estimated error for 4 subjects as
shown in Fig. 5. The distribution 1 is more restrictive for the
algorithm than the rest of the distributions, given that most

6743

௧ݕ ا As ܰ increases the error on the estimation decreases .ܩ
since the probability of receiving a ݔ representative of ܴ
increases. The distribution 3 is the most favorable as most ݕ௧ ൌ For this distribution the total error remains constant .ܩ
as ܰ increases.

 Fig. 3. Complete game play of one of the subjects. Every peak on the
acceleration corresponds to an arrow thrown in the game. The unit of the
acceleration is ݃ ൌ .ଶݏ/݉ 9.8

 Fig. 4. Statistics of the residuals ෠ܴ െ ܴ. A positive error indicates that the
estimation of the range of motion was, on average, larger than the real range
of motion, whereas a negative error implies underestimation. Every box
represents a subject where the central mark represents the median, the edges
of the box are the 25th and 75th percentiles and the whiskers extend to the
extreme residuals.

IV. DISCUSSION
This paper described an algorithm that estimates the

capability of movement of a player in real time using sensor
values created by the player. For therapeutic applications,
this algorithm permits the use of already developed games
(those which require sensor input to the game) as
rehabilitation exercises, where the player can be challenged
while playing without the aid of a therapist.

One limitation of the algorithm is related to the lack of
feedback from the game. If the game requires high sensor
values and the player can only create small values, the
algorithm will receive these small values as inputs. If the
game requires small sensor values and the player acts
accordingly, the algorithm will also receive small values. In
both situations the algorithm is receiving the same data but
the cases are opposite. One possible way to address this
issue would be to increase ܰ for those games on which we
do not expect the distribution to be representative of ܩ. But
increasing ܰ also implies that the algorithm will adapt
slowly for changes on the movement capabilities of the
player. This tradeoff is significant for higher dimensions

where we might be interested in following the position of the
player and continuously adapting the estimated range of
motion. Another possible limitation of the algorithm is that
that frequently changing ෠ܴ may make it more difficult for
the player to create an internal model of the scaling factor ܽ.
In other words, if the calibration is changed too rapidly, then
the user may experience increased movement errors.
Finding the right balance between adaptation and error is an
important direction for future research.

Fig. 5. Percentage of the mean error on ROM estimation for the Experiment
1. The error converges around 20% for ܰ ൒ 4. The origin of this error are
the first ܰ samples, where we assume ෠ܴ ൌ ܩ Since .ܩ ൐ ܴ there is an
absolute error of |ܩ െ ܴ| during the first N samples that increases the total
error.

Future work will also estimate the distribution of targets ݕ௧ෝ during game play to simulate feedback from the game,
use an adaptive ܰ, updating ෠ܴ every sample received, and
extending the algorithm for multi-dimensional game play.

REFERENCES
[1] B.H. Dobkin, The clinical science of neurologic rehabilitation, Oxford

University Press, 2003.
[2] W.R. Frontera, V.A. Hughes, R.A. Fielding, M.A. Fiatarone, W.J.

Evans, and R. Roubenoff, “Aging of skeletal muscle: a 12-yr longitudinal
study,” J Appl Physiol, vol. 88, 2000, pp. 1321-1326.

[3] L. Larsson, G. Grimby, and J. Karlsson, “Muscle strength and speed of
movement in relation to age and muscle morphology,” J Appl Physiol,
vol. 46, 1979, pp. 451-456.

[4] M. H Woollacott, A. Shumway-Cook, and L. M Nashner, “Aging and
posture control: changes in sensory organization and muscular
coordination.,” International journal of aging human development, vol.
23, 1986, pp. 97-114.

[5] S.L. Wolf, H.X. Barnhart, N.G. Kutner, E. McNeely, C. Coogler, and T.
Xu, “Selected as the best paper in the 1990s: Reducing frailty and falls in
older persons: an investigation of tai chi and computerized balance
training.,” Journal of the American Geriatrics Society, vol. 51, 2003, pp.
1794-803.

[6] J.E. Deutsch, M. Borbely, J. Filler, K. Huhn, and P. Guarrera-Bowlby,
“Use of a low-cost, commercially available gaming console (Wii) for
rehabilitation of an adolescent with cerebral palsy.,” Physical therapy,
vol. 88, Oct. 2008, pp. 1196-207.

[7] L. Yong Joo, T. Soon Yin, D. Xu, E. Thia, C. Pei Fen, C.W.K. Kuah,
and K.-H. Kong, “A feasibility study using interactive commercial off-
the-shelf computer gaming in upper limb rehabilitation in patients after
stroke.,” Journal of rehabilitation medicine : official journal of the
UEMS European Board of Physical and Rehabilitation Medicine, vol.
42, May. 2010, pp. 437-41.

[8] L. Geurts, V. Vanden Abeele, J. Husson, F. Windey, M. Van Overveldt,
J.-H. Annema, and S. Desmet, Digital games for physical therapy, New
York, New York, USA: ACM Press, 2011.

[9] E.T. Wolbrecht, D.J. Reinkensmeyer, and J.E. Bobrow, “Pneumatic
Control of Robots for Rehabilitation,” The International Journal of
Robotics Research, vol. 29, May. 2009, pp. 23-38.

6744

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

