
  

  

Abstract— People with movement impairment often cannot 
move with the range, speed, or acceleration required to play an 
off-the-shelf video game. This paper describes a smart 
calibration algorithm designed to facilitate video game play by 
people with movement impairment. The algorithm 
continuously adapts the calibration of the gaming input device 
by comparing the maximum range of motion measured in 
previous time periods, then adjusting the current required 
range of motion based on their difference.  In several 
experiments with simple acceleration-based video games using 
a Nintendo Wiimote, we show that the algorithm adapts the 
calibration to allow healthy users to play the game with their 
full available range of acceleration without need for a special 
calibration protocol. Importantly, the algorithm described here 
can be used without altering the game software by inserting a 
hardware or software module between the gaming input device 
and the game console.  Thus, the algorithm can be used with 
off-the-shelf video games without altering their source code. 

I. INTRODUCTION 
ovement impairment arises due to neural injuries such 
as stroke, spinal cord injury, traumatic brain injury, 
and cerebral palsy, or due to progressive diseases such 

as multiple sclerosis, ALS, and Parkinson’s disease [1]. 
Aging also reduces muscle strength [2,3], coordination [4], 
and range of motion (ROM) [5]. As a result, people with 
movement impairment often have difficulty playing video 
games, particularly if they cannot create the range, speed, or 
acceleration of movement necessary to reach movement 
targets defined by the game. This difficulty results in 
decreased access to video games for people with a 
movement impairment, which limits entertainment options 
and reduces social participation. Further, many rehabilitation 
clinics are interested in using video game consoles such as 
the Nintendo Wii [6,7] to motivate movement exercise. If a 
patient’s movement impairment is too severe, then he or she 
cannot exercise by playing standard video games. In 
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addition, as a patient’s level of movement impairment 
changes during movement recovery, it would be desirable to 
have a game that automatically adapts to new movement 
ability, challenging the patient to improve further. 

Previous work on developing games for movement 
training for people with a motor impairment have typically 
taken the approach of developing custom games that require 
a periodic calibration; the calibration procedure typically 
requires the participation of a supervising rehabilitation 
therapist [8,9]. The objective of the project was to develop 
an algorithm that continuously estimates the range of motion 
of a player given four design constraints: the algorithm 
receives no feedback from the game, the distribution of 
targets is unknown, the initial range of motion is unknown, 
and the range of motion can change during game play. Such 
an algorithm could be used without need for special 
calibration procedures or supervision from a rehabilitation 
therapist. It could also be used with existing video games 
without modifying their source code. 

   To satisfy these design constraints, we developed an 
algorithm that continuously adapts the calibration based on 
the difference in range of motion measured in previous time 
periods. We first describe the algorithm, then present 
experimental results that demonstrate that the algorithm 
allows users to play a simple acceleration-driven game with 
their full available range of acceleration.  

II. METHODS 

A. Calibration Algorithm 
We consider first a simple one-dimensional game that uses 

the Wiimote, an acceleration based sensor. The user must 
shoot an arrow to a target. The initial velocity of the arrow 
depends on the maximum acceleration of the z axis of the 
Wiimote, recorded during a fixed window of time of 
duration T, which begins after the vertical acceleration of the 
Wiimote passes a small threshold. The arrow is assumed to 
move with the dynamics of a point mass in earth’s gravity 
field.  The game presents multiple targets to the user at 
different positions of the screen. 

Let ݕ א ௬ܦ  describe the input acceleration to the game and 
let ݔ א  .௫ describe the sensor value the user generates (e.gܦ
in our game, the maximum acceleration measured in a 
window of ܶ seconds after the sensor reading exceeds the 
threshold ݔ௧௛௥௘௦), with: ܦ௬ ൌ ሼݕ א Թ: 0 ൏ ݕ ൏ ௫ܦ ሽܩ ൌ ሼݔ א Թ: 0 ൏ ݔ ൏ ܴሽ 

 is the maximum input acceleration that the game can ܩ ( 1 )
demand and R is the maximum input value that the user can 
create (e.g. maximum acceleration the user can create with a 
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Wiimote). In many games, ܩ will be equ
game requires the user to saturate
accelerometer to hit a very high target 
maximum acceleration the accelerometer 
other cases it may not. For example, if we 
to require fine, slow control of the input de
be less than the maximum value the senso
salient point is that every video game is des
range of sensor values. The algorithm
requires knowledge of this range. Note that 
measured by recording the sensor values (
gaming device) during normal game play fo

Now consider a user who cannot genera
that are large enough to play the game, such
user generates satisfy ݔ ൑ ܴ ൏  This .ܩ
limited success in playing the game. To a
intercept the output of the sensor, scale it
parameter ܽሾ݅ሿ and then send it to the gam
can play the game successfully, as seen
parameter ݅ refers to the ݅௧௛ iteration of th
the ݅௧௛ update of ܽ) where we define an i
every ܰ throws of the arrow to the targ
between ݔ and ݕ is given by the linea݂ሺݔሻ: ௫ܦ ՜ ݕ :௬, whereܦ ൌ ݂ሺݔሻ ൌ ܽሾ݅ሿ ݔ 

If we know the maximum acceleration 
create then the calibration coefficient shܽ ൌ  We assume that we don’t know  .ܴ/ܩ
of the algorithm is to find the estimate ෠ܴ , 
that the maximum acceleration that the use
scaled to the maximum acceleration that th
for successful play: ܩ ൌ ොܽ ෠ܴ 

We put the caret over a variable to disting
from the real value. 

Fig. 1.  Distribution of inputs to the game for an imp
no scaling, the subject can only reach those targets ሾ0 ܴሿ. B. Using a linear transformation we can mod
inputs to the game and allow the injured subject to use
game requires, ݕ א ሾ0 ܩሿ. 

One strategy for finding ොܽ is to ask the 
quickly as possible to measure ෠ܴ . Then we 
However, this strategy requires a sp
procedure that is independent of the game. 
user’s movement ability changes, due to
fatigue or disease progression or recovery
procedure must be performed again. Instead
strategy that continually estimates ෠ܴ  du
without requiring a special calibration. This
to calculate the current value of the calibr
using ොܽ ൌ /ܩ ෠ܴ and therefore is the maxim

ual to ܴ (e.g. our 
e the Wiimote 

by creating the 
can read) but in 
design our game 

evice, then ܩ may 
or can read.  The 
signed to expect a 

m presented here 
this range can be 

(i.e. output of the 
or any game. 
ate sensor values 
h that all the ݔ the 

user will have 
assist the user we 
t by a calibration 

me so that the user 
n in Fig. 1. The 
he algorithm (i.e. 
iteration to occur 
get. The relation 
ar transformation 

( 2 ) 
that the user can 
hould be set to ܴ; thus, the goal 
and find  ොܽ such 

er can generate is 
he game requests 

( 3 ) 
guish the estimate 

 
paired subject. A. With 

that are in the range 
dify the distribution of 
e the full ROM that the 

user to move as 
choose ොܽ ൌ /ܩ ෠ܴ . 
ecial calibration 
 Moreover, if the 
 motor learning, 
y, the calibration 
d, we developed a 
uring game play 
s estimate is used 
ration coefficient 

mum sensor value 

demanded by the game at the ith it
We expect the maximum value of
increase as ෠ܴ  increases until ෠ܴ ൌ ܴ
user will not be able to reach those t
as it is shown in the Fig. 1.  

The algorithm for finding this esti
1) The initial estimation of ෠ܴ  is ܩ
2) For each movement the user m

to the algorithm (i.e. in our game th
measured in a window of ܶ seconds
exceeds the threshold ݔ௧௛௥௘௦). 

3) If the number of ݔ received
movements made) in the current iter
the algorithm uses the previous esti
to scale and sends ݕ ൌ ොܽሾ݅ሿݔ to the g

4) If the number of ݔ received i
equals N the algorithm calculat
maximum value of ݔ during the o
throws of the arrow to the target, in ݔሺேሻ ൌ max௜ேାଵழ௡ஸሺ௜ାଵሻே ݔ

Let ܬ be a cost function defined byܬ൫ ෠ܴሾ݅ ൅ 1ሿ൯ ൌ ሺܭଵ/2ሻ൫ ሺேሻሾ݅ሿݔ െെܭଶ ෠ܴሾ݅ ൅ 1ሿ | ሺேሻሾ݅ሿݔ െ ሺேሻݔ
Now, the algorithm estimates ෠ܴ

the ෠ܴሾ݅ ൅ 1ሿ that minimizes (5)
algorithm is set using ොܽ ൌ ሺ1 ൅ ܿሻ
as the “challenge factor”. The pu
factor is to provide the software de
that allows precise control over 
challenged, because c > 0 requires
range of motion than the ongoing
range of motion. 

To see the rationale for the cos
condition ොܽ ൏ ܽ. In this case, the ra
by the game from the user will be 
motion of the user ( ෠ܴ ൐ ܴ). To see 
case ෠ܴ ൌ /ܩ ොܽ  ൐ ܽ/ ܩ ൌ ܴ. So ݔሺேሻሾ݅ െ 1ሿ ൌ ܴ. In this case, (5) redܬ൫ ෠ܴሾ݅ ൅ 1ሿ൯ ൌ ሺܭଵ/2ሻ൫ ሺேሻሾ݅ሿݔ  െ
If we minimize (6) then our estim
( ෠ܴ ൌ ሺேሻሾ݅ሿݔ ൌ ܴሻ. Now consider w
we expect that the user achieve
demanded by the game, so ݔሺேሻ ൌ ܴ
(5) tries to make ෠ܴ ൌ ܴ; in other 
user’s range of motion to be the m
by the user in the previous iteration.
the user can generate a greater rang
currently measuring. Thus, the se
function is introduced. This term de෠ܴሾ݅ ൅ 1ሿ increases, and therefore ෠ܴሾ݅ ൅ 1ሿ to move toward increasing
influence of this second term decre
less between iterations, which we 

 

eration of the algorithm. 
f ݔ used in the game to ܴ. When this happens the 
targets that require ݔ ൐ ܴ 

imate is as follows: 
. 

makes, the sensor sends ݔ 
he maximum acceleration 
s after the sensor reading 

d (i.e. number of game 
ration ݅ is smaller than N 
imation  ෠ܴሾ݅ሿ and thus  ොܽ 
game. 
in the current iteration ݅ 
tes ݔሺேሻ which is the 
observation period of N 
our game. ݔ௡ ( 4 ) 
y: െ ෠ܴሾ݅ ൅ 1ሿ ൯ଶ

 ሻሾ݅ െ 1ሿ| ( 5 ) ሾ݅ ൅ 1ሿ by searching for 
. Then the calibration ܩ/ ෠ܴ, where ܿ is defined 
urpose of the challenge 
esigner with a parameter 
how much the user is 

s the user to use greater 
g estimate of the actual 

st function, consider the 
nge of motion demanded 
greater than the range of 
this, we note that in this 
we expect ݔሺேሻሾ݅ሿ ൌ

duces to: െ ෠ܴሾ݅ ൅ 1ሿ ൯ଶ
 ( 6 ) 

mate ෠ܴ   will be accurate 
when ොܽ ൐ ܽ. In this case, 
s the range of motion ෠ܴ. Then the first term of 
words, it estimates the 

maximum range achieved 
. However, we know that 
ge of motion than we are 
econd term of the cost 
ecreases the total cost as 

causes the search for 
g values of ෠ܴሾ݅ ൅ 1ሿ. The 
eases when ݔሺேሻ changes 
expect to happen when 
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ොܽ ൏ ܽ. We expect this to happen when  ෠ܴ ൐ ܴ since the 
overestimation of ܴ implies that the user has to create higher 
values of  ݔ with more frequency and thus we can expect ݔሺேሻሾ݅ሿ ؆ ሺேሻሾ݅ݔ െ 1ሿ.    

Finding the ෠ܴሾ݅ ൅ 1ሿ that minimizes the cost function is a 
convex optimization problem. The minimum condition for ෠ܴሾ݅ ൅ 1ሿ can be ensured by accomplishing the Second Order 
Sufficient Conditions, given by (7).  ܬ׏൫ ෠ܴሾ݅ ൅ 1ሿ൯ ൌ ൫ܬଶ׏ 0 ෠ܴሾ݅ ൅ 1ሿ൯ ൐ 0 

( 7 ) 

We solved (7) to find the ෠ܴሾ݅ ൅ 1ሿ (8) that will be a 
minimum if ܭଵ ൐ 0: ෠ܴሾ݅ ൅ 1ሿ ൌ ሺேሻሾ݅ሿݔ ൅ ሺேሻሾ݅ሿݔଶหܭ/ଵܭ െ ሺேሻሾ݅ݔ െ 1ሿห ( 8 ) 

Equation 8 thus serves as the update law for the estimate 
of the range of motion of the user.  As can be seen, the 
estimated range of motion is the maximum acceleration 
achieved in the previous observation period (i.e. ݔሺேሻሾ݅ሿሻ, 
incremented by the difference in measurements in the past 
two observation periods (ݔሺேሻሾ݅ሿ ܽ݊݀ ݔሺேሻሾ݅ െ 1ሿ). 

B. Experiment Design 
In order to evaluate the algorithm we developed the arrow 

shooting game described previously, using the Wiimote as 
the input device to play the game. Since this accelerometer 
(ADXL330) can be easily saturated by a non-impaired 
subject, we limited the accelerations applied to the Wiimote 
by attaching it to a lever.  The users played the game by 
pushing on one end of the lever at a distance of 63 cm from 
the pivot.  The Wiimote was attached 8 cm from the pivot on 
the same side as the lever. Thus, the acceleration measured 
by the Wiimote was approximately 50% of the maximum 
acceleration the Wiimote can sense. 

We performed two experiments. In a first experiment we 
measured the evolution of the estimation of the range of 
motion during game play given a fixed distribution of 
targets. The data for this experiment was collected from 7 
non-impaired subjects playing the Wiimote game throwing 
20 arrows. We used the calibration algorithm with ܭଵ ൌ3, ܭଶ ൌ 1, ܿ ൌ 0.2 and ܰ ൌ 4. The game shows the targets 
in 6 different positions: ܻ ൌ ሾ15 30 46 61 76 92ሿ, with a 
frequency for each position given by the probability mass 
function ௧݂ ൌ ሾ1 2 3 3 4 4 ሿ/17. Before starting the games 
we asked every user to create the maximum acceleration 
possible to determine the real ܴ. This value was not used in 
the algorithm, but we used it to analyze how well the 
algorithm converged on R. 

In a second experiment, we analyzed how the convergence 
properties of the algorithm depended on the distribution of 
game targets. Let ݕ௧  be the required input to the game to 
precisely reach a target and let ݔ௧ ൌ /௧ݕ ොܽ . If most of the 
targets are distributed at ݕ௧ ا  received during game ݔ the ,ܩ
play will be smaller than the real ܴof the user, and  ෠ܴ  will be 
underestimated. By modifying ܰ we increase the number of ݔ used for every iteration of the algorithm, and thus we 
increase the chances of receiving a ݔሺ௡ ሻ ؆ ෠ܴ.  

4 subjects played the game by throwing 40 arrows to 40 
targets. The position of the targets was calculated using 4 

different distributions of ݕ௧ that are shown in the Fig. 2. For 
every distribution and subject we used 6 different values of ܰ ൌ ሾ1 2 3 4 5 6ሿ. We used the calibration algorithm with ܭଵ ൌ ଶܭ ,3 ൌ 1, ܿ ൌ 0.2. The first 3 distributions were 
artificially generated to test the algorithm while the last 
distribution was calculated by playing successfully the game 
Wiisport golf, to add a representative distribution of a game. 

We calculated the means of the error on the estimation (9) 
for the 4 subjects: ݁ ൌ ෍ หܴ െ ෠ܴห௫  ( 9 ) 

 
Fig. 2.  Distributions of ݕ௧ used on the first experiment. All the distributions 
are discrete. In all games the targets are placed in 5 possible positions that 
correspond to 20-40-60-80-100% of ܩ.   

Note that for the experiments we considered the worst 
scenario and the game allows ݕ ൐  ,With this inequality .ܩ
when ෠ܴ ൏ ܴ and the user creates an acceleration ݔ ൐ ෠ܴ he 
will see the arrow surpassing the position of the higher target 
and will reduce ݔ on future throws. Since ݔ is reduced we 
expect ݔሺ௡ሻ to be smaller than ܴ and the error of the 
estimator will increase. By limiting the maximum value ݕ that we send to the game to ܩ we can avoid this problem.  

III. RESULTS 

A. Experiment 1: Testing Convergence of Algorithm 
Fig. 3 shows accelerations measured during a game of 

twenty throws for one subject. The algorithm started with 
the initial estimate of ෠ܴ ൌ  and thus during the first 4 ,ܩ
throws it was difficult for the subject to hit the targets as he 
needs to create ݔ௧ ൐ ܴ to reach some targets. Since he 
cannot create those accelerations he creates ݔ ؆ ܴ. After an 
observation period of N = 4 throws, the algorithm calculated 
a new value for ෠ܴ  using the first 4 values of ݔ it received. 
Now ෠ܴ  is reduced and closer to ܴ and thus the ݔ௧ required 
are smaller, allowing the user to be able to reach more 
targets.  

Fig. 4 shows the mean of the errors on the estimation for 
the 7 subjects from this experiment. The mean of the means 
of the errors is -0.0137, indicating a global behavior towards 
a 0 error estimation given a distribution of targets 
representative of ܩ.  

B. Experiment 2: Effect of Target Distribution 
In the second experiment, we examined how the target 

distribution affected the estimated error for 4 subjects as 
shown in Fig. 5. The distribution 1 is more restrictive for the 
algorithm than the rest of the distributions, given that most 
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௧ݕ ا  As ܰ increases the error on the estimation decreases .ܩ
since the probability of receiving a ݔ representative of ܴ 
increases. The distribution 3 is the most favorable as most ݕ௧ ൌ  For this distribution the total error remains constant .ܩ
as ܰ increases.  

 
 

 Fig. 3. Complete game play of one of the subjects. Every peak on the 
acceleration corresponds to an arrow thrown in the game. The unit of the 
acceleration is ݃ ൌ  .ଶݏ/݉ 9.8

 
 Fig. 4.  Statistics of the residuals ෠ܴ െ ܴ. A positive error indicates that the 
estimation of the range of motion was, on average, larger than the real range 
of motion, whereas a negative error implies underestimation. Every box 
represents a subject where the central mark represents the median, the edges 
of the box are the 25th and 75th percentiles and the whiskers extend to the 
extreme residuals.    

IV. DISCUSSION 
This paper described an algorithm that estimates the 

capability of movement of a player in real time using sensor 
values created by the player. For therapeutic applications, 
this algorithm permits the use of already developed games 
(those which require sensor input to the game) as 
rehabilitation exercises, where the player can be challenged 
while playing without the aid of a therapist.  

One limitation of the algorithm is related to the lack of 
feedback from the game.  If the game requires high sensor 
values and the player can only create small values, the 
algorithm will receive these small values as inputs. If the 
game requires small sensor values and the player acts 
accordingly, the algorithm will also receive small values. In 
both situations the algorithm is receiving the same data but 
the cases are opposite. One possible way to address this 
issue would be to increase ܰ for those games on which we 
do not expect the distribution to be representative of ܩ. But 
increasing ܰ also implies that the algorithm will adapt 
slowly for changes on the movement capabilities of the 
player. This tradeoff is significant for higher dimensions 

where we might be interested in following the position of the 
player and continuously adapting the estimated range of 
motion.  Another possible limitation of the algorithm is that 
that frequently changing ෠ܴ  may make it more difficult for 
the player to create an internal model of the scaling factor ܽ.  
In other words, if the calibration is changed too rapidly, then 
the user may experience increased movement errors.  
Finding the right balance between adaptation and error is an 
important direction for future research.  

 
Fig. 5. Percentage of the mean error on ROM estimation for the Experiment 
1. The error converges around 20% for ܰ ൒ 4. The origin of this error are 
the first ܰ samples, where we assume ෠ܴ ൌ ܩ Since .ܩ ൐ ܴ there is an 
absolute error of |ܩ െ ܴ| during the first N samples that increases the total 
error.  
  

Future work will also estimate the distribution of targets ݕ௧ෝ  during game play to simulate feedback from the game, 
use an adaptive ܰ, updating ෠ܴ  every sample received, and 
extending the algorithm for multi-dimensional game play.  

REFERENCES 
[1] B.H. Dobkin, The clinical science of neurologic rehabilitation, Oxford 

University Press, 2003. 
[2] W.R. Frontera, V.A. Hughes, R.A. Fielding, M.A. Fiatarone, W.J. 

Evans, and R. Roubenoff, “Aging of skeletal muscle: a 12-yr longitudinal 
study,” J Appl Physiol, vol. 88, 2000, pp. 1321-1326. 

[3] L. Larsson, G. Grimby, and J. Karlsson, “Muscle strength and speed of 
movement in relation to age and muscle morphology,” J Appl Physiol, 
vol. 46, 1979, pp. 451-456. 

[4] M. H Woollacott, A. Shumway-Cook, and L. M Nashner, “Aging and 
posture control: changes in sensory organization and muscular 
coordination.,” International journal of aging human development, vol. 
23, 1986, pp. 97-114. 

[5] S.L. Wolf, H.X. Barnhart, N.G. Kutner, E. McNeely, C. Coogler, and T. 
Xu, “Selected as the best paper in the 1990s: Reducing frailty and falls in 
older persons: an investigation of tai chi and computerized balance 
training.,” Journal of the American Geriatrics Society, vol. 51, 2003, pp. 
1794-803. 

[6] J.E. Deutsch, M. Borbely, J. Filler, K. Huhn, and P. Guarrera-Bowlby, 
“Use of a low-cost, commercially available gaming console (Wii) for 
rehabilitation of an adolescent with cerebral palsy.,” Physical therapy, 
vol. 88, Oct. 2008, pp. 1196-207. 

[7] L. Yong Joo, T. Soon Yin, D. Xu, E. Thia, C. Pei Fen, C.W.K. Kuah, 
and K.-H. Kong, “A feasibility study using interactive commercial off-
the-shelf computer gaming in upper limb rehabilitation in patients after 
stroke.,” Journal of rehabilitation medicine : official journal of the 
UEMS European Board of Physical and Rehabilitation Medicine, vol. 
42, May. 2010, pp. 437-41. 

[8] L. Geurts, V. Vanden Abeele, J. Husson, F. Windey, M. Van Overveldt, 
J.-H. Annema, and S. Desmet, Digital games for physical therapy, New 
York, New York, USA: ACM Press, 2011. 

[9] E.T. Wolbrecht, D.J. Reinkensmeyer, and J.E. Bobrow, “Pneumatic 
Control of Robots for Rehabilitation,” The International Journal of 
Robotics Research, vol. 29, May. 2009, pp. 23-38.  

 

6744


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

