
  

 

Abstract— It has been widely accepted that the CNS 

develops a representation (model) of the environment, but what 

is not entirely clear is the coordinate reference frame used. We 

explored how visual feedback influenced the coordinate frame 

in which the CNS stores and recalls these memories of learned 

skills in a reaching-generalization task. Four groups of subjects 

trained to perform reaching movements in a perturbing force 

field, two with aligned (first person) visual feedback and two 

with non-aligned (vertical screen). After 170 trials of practice, 

we asked subjects to extrapolate (generalize) what they learned 

to a new part of the workspace in novel force environments 

(endpoint-based versus joint-based extrapolated force fields). 

Regardless of the test condition, all subjects improved their 

ability to generalize skills to the new workspace. There was 

evidence that the extrapolation of their learned skills was based 

on both object-centered and joint-based coordinates. Consistent 

with previous studies, subjects performed significantly better in 

joint-extrapolated force field, but only if the visual feedback 

was vertical. Subjects performed equivalently in both force 

fields with aligned (first person) feedback. These findings 

suggest that the type of visual feedback biases the way subjects 

perform, and that learning results can be significantly 

influenced by feedback.  

I. INTRODUCTION 

ecent studies have shown evidence of how the nervous 

system employs internal models to anticipate and 

compensate for the dynamics of an environment. The 

nervous system has the remarkable ability to adapt to its 

surroundings, and one of the most common approaches is by 

distorting the mechanical environment and observing the 

subject’s adaptation of control [1, 2]. An interesting prospect 

of this work is to evaluate the success of extrapolation to 

untrained regions of the workspace. Such tests can determine 

the coordinate reference frame used by the motor system [1, 

2].  

In such studies, researchers have found evidence that the 

nervous system employs intrinsic coordinates to store and 

recall learned motor skills [1-5]. In other words, the internal 

model generates torques to control the arm based on 

shoulder and elbow kinematics rather than Cartesian 
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endpoint kinematics. In contrast, other studies have 

demonstrated evidence for learning in extrinsic coordinates.  

For example, for a simpler external dynamic environment, 

the internal model encodes in object-centered or extrinsic 

coordinate system [6].   

Additionally, distorting visual feedback can also 

dramatically influence adaptation [7-10], so it is plausible 

that even a simple manipulation of visual feedback can 

impact learning.  In this study, we were interested in how 

display alignment affects the coordinate frame 

representation used within the internal model. Veilleux and 

Proteau have shown that performance is less variable with an 

aligned (first person) versus a non-aligned (vertical) display 

[11]. While this study highlights the impact of visual 

alignment on online control, it is unknown how this 

experiment factor influences learning generalization. 

In this study, we explored the properties of the internal 

model considering both display approaches for the 

adaptation. Here we present an experiment that evaluates the 

coordinate reference frame for representing the environment 

when the visual feedback is provided in the aligned and the 

non-aligned feedback conditions. Our results suggest 

multiple coordinate representations employed by internal 

model and the reaching performance influenced by the type 

of visual feedback presented during training.  

II. MATERIALS AND METHODS 

A. Experimental Setup 

The purpose of our experiment was to understand 

adaptation to changed dynamics of a reaching task under 

different visual feedback conditions. A robot manipulandum 

was used for generation of different dynamical environments 

within which human subjects performed reaching task by 

grasping robot’s handle.  

The measurement apparatus, the manipulandum, used in 

this study is a light weight, low friction, and two degree of 

freedom robot [12]. The robot produced forces at its end-

effector, the handle, using two low-inertia DC torque motors 

(PMI Corp. model JR16M4CH) that are mounted on its base 

and are independently connected to each joint using a 

parallelogram arrangement. Position and velocity 

measurements were made using two optical encoders 

(Teledyne Gurley) and two tachometers (PMI), respectively, 

which are mounted on the joint axes.  

The visual feedback regarding location of a target and 

position of a subject’s hand (in form of a cursor) was 

provided using either of two display screens shown in Fig. 

1(a). The aligned display was an opaque, rectangular, and 
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white platform mounted horizontally and directly above the 

handle of the robot. Video was projected on the aligned 

screen using a projector mounted on the ceiling. The non-

aligned display was a LCD monitor mounted directly above 

the base of the robot at approximate eye level of a subject.  

B. Subjects 

Twenty right handed human subjects participated in this 

study. They had no past history of neurological, shoulder or 

elbow disorders and were within the age range of 21 to 40 

years. The Subjects with ambidexterity were excluded from 

this study.  

C. Experimental Procedures 

Each subject participated in this study were given a 

reaching task where they had to move the handle of the 

manipulandum to bring a cursor on the screen into a target 

circle. The cursor indicated position of the handle. In 

particular, the reaching task included moving a cursor from 

the center of a workspace to a target and back to the center 

of a workspace which represented center-out reaching 

movements. A target was randomly chosen from the set of 

four targets which were 10 cm away from the center of a 

workspace at 24, 114, 204, and 294 degrees from the x-axis. 

A positive reinforcement feedback in form of yellow to red 

target color change was given to subjects if completed 

movements were within the range of 0.4 to 0.6 seconds.  

The reaching task was specified in two regions: the 

training and test workspaces. Each workspace was of the 

size 20 x 20 cm2, and its location with respect to a subject is 

shown schematically in Fig. 1(b). In order to prevent inertial 

artifacts of the manipulandum associated with changing the 

operating configuration, the training and test workspaces 

were selected by moving the subject with respect to the 

robot.  

During certain phases of the experiment, the 

manipulandum was programmed to produce forces on the 

handle, hence on the hand of the subject during reaching 

task. These forces were velocity dependent and indicated by 

the vector f in the following equation: 

     ̇, (1)  

where  ̇ is the velocity vector for subject’s hand, and   is a 

viscosity matrix in the extrinsic coordinates: 

   [
          
         

]       . (2)  

The force field defined by (1) is translation invariant in end-

point coordinates, and produced forces are identical in the 

training and the test workspace (Fig. 1b). Hereafter this force 

field is termed the “end-point field”. 

During certain phases of the experiment, a different force 

field was imposed on the handle. This field was depended 

upon the angular velocities of subject’s elbow and shoulder 

joints: 

     ̇, (3)  

where   is the torque vector acting on the subject’s shoulder 

and elbow joints,  ̇ is the subject’s joint angular velocity, 

and   is a viscosity matrix in the subject’s joint coordinates. 

The field described by (3) is translation invariant in joint 

coordinates. In fact, it is equivalent to following: 

               ̇, (4)  

where             is the configuration dependent 

Jacobian which maps the configuration from   to  , and the 

superscript   suggests the transpose operation. Since the 

Jacobian used is a function of the angular configuration of a 

limb, the force field define by (4) depends on workspace 

location.  Thus, the produced forces are not identical in the 

training and the test workspace (Fig. 1b). Furthermore, we 

chose   such that the forces field produced by (4) was 

identical to the force field produced by (1) at the training 

workspace. For each subject, the matrix   was calculated as 

following: 

        
        , (5)  

where    is the joint-viscosity matrix, and      is the 

Jacobians evaluated at the center of the training workspace 

for the subject’s right arm. Hereafter this force field is 

termed the “right-joint field”.  

The end-point field and the right-joint field were identical 

at the training workspace with correlation coefficient of 0.99 

and were almost orthogonal to each other with correlation 

coefficient of -0.25. Furthermore, the forces produced by 

both fields were equivalent in magnitude at both 

workspaces.  

The experiment consisted of baseline, initial exposure, 

training, aftereffect and final performance phases. The 

subjects were randomly divided into four groups of five. All 

subjects were trained to make reaching movements with 

their right arm in the end-point field at the training 

workspace. Their performance was tested before and after 

the training with either the end-point or the right-joint field 

at the test workspace. The procedure is summarized in Fig. 

2. The visual feedback of the hand position was removed 

during the specified trials by blanking the cursor.  

 

 

 
Fig. 1.  Sketch of the manipulandum and the experimental setup: (a): 

Human subjects sat in front of the manipulandum robot and grasped the 

handle in order to perform reaching tasks while targets were presented using 

either the aligned or the non-aligned display. The aligned display is shown 

transparent here only for illustration purpose. (b): location of the training 

and the test workspace respect to a subject.  
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Fig. 2.  Summary of experimental procedure: Group 1 and 2 received visual 

feedback with the aligned display, whereas group 3 and 4 received visual 

feedback with the non-aligned display.   

D. Data Analysis 

The position and velocity data of the subjects’ hand were 

acquired from the manipulandum at 400 Hz. The trajectories 

were compared using the correlation coefficient which was 

previously developed by Shadmehr and Mussa-Ivaldi [1]: 

 
  

        

        
  (6)  

where ρ is the correlation coefficient comparing U (u1, u2, 

…, un) and Y (y1, y2, …, yn) velocity vectors. The covariance 

and standard deviations are described as: 

            〈             〉  (7)  

 where 〈   〉   ∑      
 
    and 

   〈   〉  
 

 
〈   〉, 

(8)  

       √  〈             〉 . (9)  

The   operator represents the expected value of the argument 

and the symbol ∙ in (8) indicates the dot product operation 

between two vectors. 

  The correlation coefficient compares reference hand 

velocity vectors to that of average baseline. This is also 

referred to as the performance measure since it determines 

the closeness to the best performed trajectories: baselines.  

The measure used in this paper was statistically analyzed 

using repeated measure analysis of variance with factors: 

evaluation, display, and time. Normalized pre to post change 

was analyzed using two-way analysis of variance with 

factors: evaluation and display. Post hoc comparisons 

between four paired group means were done using 

Bonferoni-Holm method. These four pairs were chosen such 

that one of the factors in a pair was always common.  

III. RESULTS 

The subjects performed reaching task in artificially created 

force environment. The manipulandum robot was 

programmed to produce different types of force field which 

acted on the subject’s hand, hence changing the arm 

dynamics. The subject’s movement patterns were assessed 

during the different conditions to understand the reference 

coordinates used by the internal model. 

First, the baselines were collected in the unperturbed force 

environment. The baseline trajectories were essentially in 

the straight line path regardless of different workspace and 

display. The correlation coefficient for baselines was 0.9434 

± 0.0116 (mean ± 95% confidence interval). Furthermore, 

these baselines had almost symmetric bell shaped velocity 

curves [13, 14]. 

Next, the initial performance was measured at the test 

workspace when subjects were intermittently exposed to the 

force field assigned to their group. The group average of 

hand trajectories during the initial exposure is shown in Fig. 

3. Notice that the effect of the field on hand movements was 

quite significant which drove the hand to an undesired 

position, away from the target. Since the cursor position was 

blanked throughout these movements, corrective actions that 

we observe must have been due to proprioceptive feedback. 

In pictorial manner, the initial burst of movements followed 

by corrective actions produced “hooks” in trajectories [1].  

Next, all subjects were trained to make reaching 

movements in the end-point field at the training workspace. 

At the beginning of the training, the perturbation affected 

their movements which were significantly different than 

baselines. However, the hooks that were observed initially 

vanished as the subjects practiced, and their hand movement 

started to resemble baselines. Finally aftereffects were 

observed in their movements when the force field was 

removed. It must be noted here that the groups who were 

trained using the aligned display had statistically identical 

results to those who were trained using the non-aligned 

display during the training. The results of this adaptation 

were consistent with previous studies [1-3, 15].  

Finally, our subjects performed reaching movements in 

the test workspace and in the presence of the force field 

assigned to their group. The group average of hand 

trajectories during the final performance is shown in Fig. 3. 

Note the improvement in the group’s final performance in 

novel fields when compared to initial exposure.  

The initial exposure and the final performance trajectories 

at the test workspace were compared using correlation 

coefficient and are summarized in Fig. 4(a) and (b). Based 

on repeated measure ANOVA, groups’ performance in the 

right-joint field was significantly better than in the end-point 

field regardless of training and different displays (p = 6.03e-

5). Furthermore, the effect of the training itself improved all 

group’s performance regardless of different displays and 

field exposures (  ; p = 3.07e-4). There was an interaction 

detected between different displays and the field exposures 

(p = 4.78e-3). This interaction effect was further analyzed 

using Bonferoni-Holm post hoc method after taking out the 

factor of time from the model. When the non-aligned display 

was used, subjects’ performance in the end-point field was 

significantly lower when compared to their performance in 

the same field but with the aligned display (  ; p = 1.29e-2) 

and in the right-joint field with the non-aligned display (  ; 

p = 5.03e-3). Also note that the initial exposures for all 

groups were significantly worse than baseline, and total 

recovery in their performance was not observed at the test 

workspace even after the improvement due to the training.   

 Finally, the difference between the final performance and 

the initial exposure at the test workspace was computed. Fig. 

4(c) shows normalized pre to post change. Based on two  

Phase 

No.
Phase Type

No. of 

Trials

Cursor 

displayed?
Environmental Field Workspace

1 Familiarization 40 Yes

2 Baseline 20 No

3 Familiarization 40 Yes

4 Baseline 20 No

5 120, 20 Yes, No
Group 1&3: NULL, end-point field                              

Group 2&4: NULL, right-joint field                                             

6 120, 20 Yes, No NULL, end-point field

7 Training 150 Yes

8 Final Training 20 No

9 Aftereffects 20, 120 No, Yes NULL, end-point field

10 Training Refresher 20 Yes end-point field

11 Final Performance 20 No
Group 1&3: end-point field                              

Group 2&4: right-joint field                                             
Test

Intermittant Initial 

Exposures

Null

Test

Training

Training

end-point field
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Fig. 3.  Average hand trajectories with 95% confidence interval for different groups during the initial exposure and the final performance phase at the test 

workspace.  

 
Fig. 4.  Average group correlation coefficient with   95% confidence interval during different conditions at the test workspace: a) the initial exposure, b) the 

final performance, c) normalized change from the initial exposure to the final performance, d) legend. Significant difference between groups (p<0.05) is 

displayed as a dark horizontal bracket with an asterisk. Significant differences for the same post hoc test by combining group means in time are shown by 

asterisk hat (     ) since the effect of training does not seem to alter displayed trends. For more information about   , refer to the results section. 
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factor ANOVA, there was no significant difference between 

groups who experienced same force environment but trained 

using different visual displays. Thus neglecting the effect of 

different displays, the pre to post change for all groups was 

significantly greater than zero (p = 4.26e-5 and 3.84e-3 for 

groups who experienced the end-point field and the right-

joint field, respectively). Note that this improvement for all 

groups was also detected by repeated measure ANOVA. The 

change was significantly higher for the groups who 

experienced the end-point field compared to the groups who 

experienced the right-joint field (  ; p = 2.44e-3). 

IV. DISCUSSION 

This study investigated the possible coordinate 

representations of the internal model under different visual 

feedback conditions as someone recalls and extrapolates 

recently-learned reaching skills. As evidenced by pre to post 

change (Fig. 4c), training improved performance in both 

endpoint-based and joint-based force fields in the test 

workspace, regardless of different visual feedback 

conditions. Furthermore, the subjects who received visual 

feedback with the non-aligned (vertical screen) display had 

the lowest performance in the end-point field in spite of the 

improvement due to training (Fig. 4b). There is clear 

positive influence caused by first-person feedback in these 

learning tasks.  

Generalization has been studied quite extensively for 

deducing coordinate reference frames of neuromotor 

learning, whether it is new hand positions [1, 2], tasks [16], 

movement directions [3], dynamics [17], speeds [4], or 

visuomotor environments [18]. These have revealed 

evidence for imperfect generalization, that is, despite evident 

improvement through training in the novel environments, the 

motor system is not able to reproduce baseline performance 

[3, 4, 8, 16, 19-21]. It is through these imperfections that we 

gain insights into the manner in which the nervous system 

represents what it has learned.  

Our results are consistent with the hypothesis that 

multiple, simultaneous internal representations of extrinsic 

and intrinsic coordinate systems mediate learning and 

control of novel environments. The evident performance 

improvement in the region outside the training workspace 

demonstrates at least some compatibility of subject learning 

with both evaluation force fields. If subjects had, for 

example, developed the internal model based on only the 

intrinsic space, we would not have observed performance 

improvements when evaluated in the end-point field. 

However, improvements in both the end-point and the right-

joint fields provide evidence of simultaneous extrinsic and 

intrinsic representations of the environment.  

Multiple representations may simply be because of 

multiple modes of feedback. Krakauer et al. (1999) showed 

that hand kinematics were learned from visual errors in 

extrinsic coordinates and dynamics were learned from 

proprioceptive errors in intrinsic coordinates [22]. In our 

study, we let our subjects simultaneously observe visual 

error (as a cursor) while they trained with a dynamic force 

field. If so, one might expect better performance when visual 

feedbacks are closer to first person feedback in the end-point 

field condition, which was found to be the case.  Also one 

might predict that this difference due to vision would not 

influence the performance observed in the joint based field 

condition, which we also found to be the case.  

Wolpert and Kawato (1998) proposed a possible 

mechanism for multiple paired forward and inverse models 

explaining partial generalization [23].  It was postulated 

based on the assumption that a single neuron cannot learn to 

cope with all different types of dynamics and kinematics of 

the environment and objects. Based on this modular 

structure hypothesis, different modules can learn a task at 

the same time and build different internal models while 

training which can be called upon independently or 

simultaneously during generalization depending on feedback 

cues. Simulation and behavioral studies show that multiple 

internal models can be learned [24-26]. Furthermore, these 

internal models can also have interference or combinatory 

effect during adaptation [17, 23-28]. We suspect that 

separate neural networks are responsible for encoding the 

inverse dynamics of the environment, based on both 

extrinsic versus intrinsic coordinates.  

Similar evidence for simultaneous representation of 

internal models using different coordinate systems has been 

provided by studies of interference [17, 22, 29, 30]. These 

studies suggested that tasks with opposing forces, each 

learned independently in extrinsic and intrinsic coordinates, 

would not show any interference, since they would not 

compete for same memory resources [22, 31]. For example, 

visual rotations are known to be learned in extrinsic 

coordinates [10], and inertial perturbations which are 

speculated to be learned in intrinsic coordinates do not 

interfere with learning visual rotations [22]. Furthermore, the 

retrograde and anterograde interference has been reported 

when learning velocity dependent and position dependent 

inertial loads [32]. In contrast, Davidson et al. (2005) 

evidenced that loads applied to hand and arm are learned, 

but not represented separately, which hints for common 

coding [33]. They further showed that joint based and hand 

based forces can be learned equally well, which is 

independent of coordinate system in which load is 

represented and exposed to the subjects (on hand versus on 

arm). The interference behavior in these studies could be 

explained by our assertion of multiple simultaneous extrinsic 

and intrinsic representations. Our result that feedback 

influences the amount of each type of representation may 

also explain why some studies show interference and some 

do not.  

The complexity of visual feedback could affect the degree 

of computational processing by the nervous system. Similar 

to Ahmed et al. (2008) interpretation, we believe that the 

non-aligned screen may have introduced an additional step 

of neural computation (task complexity) to map movements 

in the horizontal plane to the visual feedback in the vertical 

plane [6]. The effect of different visual presentation on 

online control processes has been shown by Veilleux and 

Proteau (2010) [11]. Thus, we suspect the additional step of 

online computation might have interfered with the internal 

model that predicts the dynamics of the environment based 

on extrinsic coordinates but not with one that predicts the 
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environment based on intrinsic coordinates. This further 

supports the previous claim that the joint coordinate based 

environment is easier and manageable regardless of different 

visual feedback conditions and even before training.   

Our results complement and extend previous studies 

concerning the coordinate representations. Many studies 

have reported evidence that information about dynamics is 

represented in muscle or joint-based coordinates for the 

training arm [1, 2, 15, 20, 34, 35]. In contrast, there has been 

evidence for extrinsic coordinate space generalization for 

learning kinematic transformations [36]. Although our 

method of probing the structure of internal model is similar 

to Shadmehr and Mussa-Ivaldi (1994), we introduce some 

new analysis and conclusions. It should be noted that 

Shadmehr and Mussa-Ivaldi (1994) based their analysis on 

final performance [1]. They suggested intrinsic coordinate 

representation for the learned dynamics since the subjects’ 

performance after training was better in the right joint field 

(correlation coefficient = 0.91) versus the end-point field 

(correlation coefficient = 0.62). However, with analysis of 

both initial exposure and final performance, we examined 

learning compatibility from each group, and can now infer 

the existence of simultaneous coordinate representations. 

Beyond the impact of training, force fields based in different 

coordinate systems may simply differ in overall difficulty. 

One striking finding from our experiment was that subjects’ 

performance in the right-joint field during the initial 

exposure was significantly better than those who 

experienced the end-point field (Fig. 4a) even though force 

magnitude experienced in both fields were similar. This 

suggests that the right-joint field is intrinsically easier for the 

subjects to handle even before training had begun. Thus the 

subjects had an intrinsic advantage of performing better in 

the joint space force field.  

 This study provides new understanding of how internal 

models are affected by different visual presentation. Our 

findings have potential impact on motor control 

investigation in general, since the presentation of visual 

feedback is typical for a majority of training paradigms. The 

results from this study can help develop robotic 

neurorehabilitative treatments for patients who have 

impaired ability to control reaching activities. The future 

training scenarios that incorporate the both intrinsic and 

extrinsic coordinate reference frame should best optimize 

robotic training programs. Furthermore, the presentation of 

visual feedback during training must be kept in mind when 

designing future experiments and patient treatments since it 

has greater impact on the reaching movement performance. 
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