
 

 

 

   

Abstract— Deep brain stimulation (DBS) effectively 

alleviates the pathological neural activity associated with 

Parkinson’s disease. Its exact mode of action is not entirely 

understood. This paper explores theoretically the optimum 

stimulation parameters necessary to quench oscillations in a 

neural-mass type model with second order dynamics. This 

model applies well established nonlinear control system theory 

to DBS.  The analysis here determines the minimum criteria in 

terms of amplitude and pulse duration of stimulation, 

necessary to quench the unwanted oscillations in a closed loop 

system, and outlines the relationship between this model and 

the actual physiological system.  

 

I. INTRODUCTION 

 Deep brain stimulation (DBS) is well established as an 

effective method of treating the symptoms of medically 

refractive Parkinson’s disease [1]. Its exact mode of action 

however, remains open to debate. Both patient and animal 

models of Parkinson’s disease demonstrate abnormal, 

pathological activity in the neurons of the basal ganglia, 

which is now well established as being due to the depletion 

of dopamine in the substantia nigra pars compacta, a centre 

within the basal ganglia of the brain [2]. An increase in the 

spontaneous firing rate and periodic oscillatory activity has 

been recorded [3]-[6]. 

 DBS applied to treat Parkinson’s disease is typically a 

high frequency (>100Hz) pulse train applied to the 

subthalamic nucleus (STN) via surgically implanted 

electrodes. The choice of stimulation amplitude and pulse 

duration is usually made based on a trial and error approach 

for an individual patient with clinically effective amplitudes 

ranging from 1 – 5 V and pulse durations from 60 – 450 µs 

[7]-[9]. 

 Within the basal ganglia, the STN forms an important 

feedback loop with the globus pallidus pars externa (GPe). 
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This loop has been proposed as a possible source of the 

pathological oscillations that are inherent in Parkinson’s 

disease [10]. This idea is supported by the study of an in 

vitro model by Plenz and Kital [11], which suggests that the 

STN –Gpe circuit forms a central basal ganglia pacemaker. 

 The resemblance of DBS quenching pathological 

oscillations in the STN-GPe loop to the concept of ‘high-

frequency’ dither injection being used to quench ‘low-

frequency’ oscillations in nonlinear control feedback loops 

has previously been explored using a neural-mass type 

model of the basal ganglia [10]. The injection of high-

frequency dither to modify the properties of a non-linear 

system is a well established engineering tool. In this study 

the model developed in [10], which is of fourth order and 

contains two nonlinearities, is simplified to a feedback loop 

containing a second order linear system and a single 

nonlinearity, with positive feedback, as shown in Fig.1. 

This follows the demonstration by Rosenblum and 

Pikovsky [3], that the local field potential (LFP) of a family 

of interconnected neurons, with excitatory interconnections 

(which is why we use positive feedback in Fig.1), grows in 

accordance with second order dynamics. The effect of 

changing DBS amplitude and pulse duration necessary to 

quench pathological low-frequency oscillations is 

examined, with the help of describing function (DF) 

analysis. Although the results obtained are specific to this 

model, it is suggested that by reducing the complexity of 

the physiological system, whilst retaining key features, 

insight can be gained into the mode of action of DBS that 

will be applicable in a clinical setting. 

  

II. METHODS 

A. The Model 

The basic neural mass model of synchrony in a group of 

interacting neurons studied here is comprised of a nonlinear 

sigmoidal element followed by a second order linear block. 

This combination of sigmoidal nonlinearity and low order 

linear dynamical system is very common in the field of 

neural mass modeling [12]. As is usual in these models, the 

input to the sigmoid is the LFP. In this paper, the output is 

taken to be the deviation from zero of the total synaptic 

current injected into the group of neurons. Since this 

deviation may be positive or negative, the sigmoid is taken 
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to be symmetrical about the origin. There are many 

sigmoids encountered in the literature, but the one which 

has been found most convenient in the present research is 

the arctan function given by: 

 

 � � �2�� arctan �
�� 

 

(1). 

It is proposed that the parameter h decreases steadily as 

dopamine is depleted by the advance of Parkinson’s 

disease. This means that the slope of u vs. y evaluated at the 

origin, which is 2/[πh], sharpens steadily as the disease 

progresses. 

The transfer function is of the form 
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(2) 

where k and b are constants. This is the simplest transfer 

function that will generate oscillations in conjunction with 

the sigmoidal function. 
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Fig. 1 Simple neural mass model of synchrony within a closed loop of 

interacting neurons. 

  

Using linear control theory [13], it is readily shown that 

almost sinusoidal oscillations at angular frequency ω=b set 

in as soon as the small signal loop gain at ω=b exceeds 

unity, i.e. 

  

 2�� �  2��  

 

(3a) 

   

For later use it is convenient to rearrange this as 

 

 1 � ���� �  0 

 

(3b) 

It is clearly shown by (3b) that dopamine depletion (leading 

to progressive decrease in h), must eventually result in the 

onset of oscillations. The output u from the sigmoid 

represents the deviation from zero of the total synaptic 

current of the group of neurons, whilst y, the output from 

the transfer function block is the deviation from zero of the 

LFP [9], [14]. 

 The DBS waveform (or dither), is modeled as a biphasic, 

rectangular pulse, with amplitude a, period T and fractional 

pulse duration α for both positive and negative excursions. 

It is applied additively at the input to the sigmoidal 

function. The dither pass-band is well above the pass-band 

of G(s). 

 

B.  The Equivalent Nonlinearity 

 It is assumed that y remains approximately constant over 

a DBS or dither cycle. The signal u consists of a slowly 

varying component superimposed on a series of harmonics 

of the dither frequency. However, these harmonics are 

filtered out by G(s), so that y responds essentially to the 

low frequency component of u. Under these conditions 

[13], the original nonlinearity and the applied DBS may be 

replaced by a single equivalent nonlinearity, which is the 

function û versus y, where û is the mean value of u over a 

dither cycle. Simulations have confirmed the validity of this 

concept [10]. In this case the result is 
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(4) 

For later use, the slope at the origin of this equivalent 

nonlinearity is evaluated as 
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(5) 

   

The increase in the term 2/[πh] is offset by the decrease of 

the term in square brackets in (5), as the DBS amplitude is 

increased. 

 

C. The Describing Function 

 In order to further examine, on a theoretical basis the 

effect of changing the amplitude of stimulation, a concept 

from control engineering – DF analysis - can be applied 

[10],[13]. DF analysis enables the approximate calculation 

of the response of a particular non-linear system to a given 

input. In (4), it is assumed that  
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(6) 

where Ym is the amplitude of the sinusoidal oscillation and 

t represents time. Using the approach to calculation of DF 

given in [13], it has proved possible in this project to 

evaluate the DF as  
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where f is  
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with  
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and 
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(10) 

It is planned to give the derivation of these equations in 

an extended paper. For present purposes, it is sufficient to 

state that, as Ym goes to zero, DF reaches a maximum 

value, which is equal to the slope at the origin of the 

equivalent nonlinearity, as given in (5). The DF is plotted 

as function of Ym in Fig.2, which shows simulated 

conditions for a healthy system, dopamine depletion and 

when DBS is applied to the system. 

 

III. RESULTS 

Equation (5) permits calculation of the range of values of a 

necessary for quenching by the counterpart of (3a), where 

2/[πh] is replaced by the expression given on the right hand 

side of (5). The result is 
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(11) 

which leads directly to 
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Fig. 2 The DF plotted as a function of the amplitude of oscillation, Ym. 

The ordinate 2 which has been emphasized in this figure is just 2b/k with b 

= k. (a) depicts a non-oscillating (healthy) system. (b) shows the 

intersection that occurs with a decreased value of h due to dopamine 
depletion. (c) is when DBS is applied to the system, counteracting the 

decrease in h and thereby quenching the oscillations. 

 

In view of (3b), which applies to a patient with Parkinson’s 

disease, (12) predicts that quenching can only be obtained 

for  

 

 + � �1 �  ���� �2  

 

(13) 

Fig. 3 shows the theoretical curve of the minimum DBS 

amplitude necessary for quenching oscillations as a 

function of α, for the illustrative value of the quantity on 

the left hand side of (3b), taken as 0.01 (for b = k and h = 

0.99/π).  

 
Fig. 3: Theoretical curve of the amplitude of DBS signal for quenching, as 

a function of fractional pulse duration. 
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The parameter a is in normalized units. These can be 

converted to volts using clinical data such as provided in 

[1], as will be done in a later extended paper. 

The illustration in Fig.3, that quenching of oscillations 

can be achieved at lower stimulation amplitudes when the 

pulse duration is increased is supported by clinical 

observations [1],[7]–[9]. 

For the stimulation waveform considered, the mean 

square amplitude is readily shown to be 2a
2
α. This quantity 

is directly proportional to the power injected by the 

stimulating electrodes. A graph of a
2
α vs. α is shown in Fig. 

4. This shows that the power needed to quench oscillation 

decreases monotonically with fractional pulse duration. The 

maximum possible value of fractional pulse duration is 0.5. 

However, clinical considerations must dictate the maximum 

value which can be used in practice. 

 

 
Fig. 4: Theoretical curve of the mean square amplitude of stimulation as a 

function of fractional pulse duration. 

 

IV. DISCUSSION 

Control theory and concepts most commonly applied to the 

theory of non-linear feedback systems are used in this study 

to provide a framework in which to explore the effects of 

DBS. The first exposition of this approach presented in [10] 

is further developed and analyzed.  

 The DF analysis enables the identification of the 

conditions under which oscillations are present in the 

feedback loop considered, the determination of the 

minimum amplitude of stimulation and the mean DBS 

power needed to quench these oscillations, both as a 

function of fractional pulse duration. The translation and 

application of these parameters to a clinical environment 

will facilitate the choice of settings necessary to quench the 

pathological oscillations in patients, potentially providing 

an improvement on the current trial and error approach 

followed.  

 The model examined here is the simplest that has so far 

been discovered to model the onset and quenching of 

oscillations in a group of mutually excitatory neurons. The 

specific structure of the basal ganglia, along with cortical 

and striatal inputs and outputs, will be incorporated at a 

later date. Volume conduction effects of the tissue will also 

be taken into account. 

 In summary, the analysis outlined here provides an initial 

platform from which more in depth and physiologically 

complete models and analyses can be developed. 
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