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Abstract— In cardiovascular diagnostics, phase-contrast MRI
is a valuable technique for measuring blood flow velocities and
computing blood pressure values. Unfortunately, both velocity
and pressure data typically suffer from the strong image noise
of velocity-encoded MRI. In the past, separate approaches
of regularization with physical a-priori knowledge and data
representation with continuous functions have been proposed
to overcome these drawbacks. In this article, we investigate
polynomial regularization as an exemplary specification of
combining these two techniques. We perform time-resolved
three-dimensional velocity measurements and pressure gradient
computations on MRI acquisitions of steady flow in a physical
phantom. Results based on the higher quality temporal mean
data are used as a reference. Thereby, we investigate the
performance of our approach of polynomial regularization,
which reduces the root mean squared errors to the reference
data by 45% for velocities and 60% for pressure gradients.

I. INTRODUCTION

IN management of cardiovascular diseases, information
about blood flow velocities and blood pressures is of great

importance. Since sphygmomanometry isn’t able to deliver
time-resolved blood pressure values for arbitrary vessels,
pressure measurements by catheterization are commonly
used. However, these methods suffer from their invasiveness,
use of radiation and the lack of spatial information.

Images of the flow velocities inside the blood vessels
can be obtained by techniques like phase-contrast magnetic
resonance imaging (PC-MRI). In recent years, methods
to compute pressure gradients and relative pressures from
velocity-encoded MRI by using the momentum conservation
of the Navier-Stokes equations have been developed.

Among others, notable work was done by Yang et al. [1],
[2], Ebbers et al. [3], [4], Fatouraee and Wang et al. [5]-[11],
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Tyszka et al. [12], Balleux-Buyens et al. [13], Song et al.
[14], Bolin et al. [15], Thompson et al.[16], Lum et al. [17]
and Moftakhar et al. [18]. Non-invasive MRI-based blood
pressure computation is very promising due to the possibility
to obtain spatially resolved pressure values inside the vessels.
However, since the blood flow velocity images are given as
discrete voxel volumes, discretized Navier-Stokes equations
have to be used. Together with the typically low spatio-
temporal resolution and low signal-to-noise ratios of PC-
MRI, numerical derivations in the discretized equations lead
to an amplification of image noise. Thus, the accuracy of
the blood pressure computations is limited. Furthermore,
cumbersome iterative numerical integration schemes [3], [19]
have to be applied to compute relative pressures from the
noisy, discrete pressure gradients.

Several strategies to increase the robustness and accuracy
of the blood pressure computation methods have been inves-
tigated. Regularization of the given discrete velocity images
is proposed by Song et al. [5], [14] and Bolin et al. [15]. Ji-
raraksopakun et al. [20], [21] apply this technique to velocity
measurements using Tagged-MRI. These regularization tech-
niques incorporate physical a-priori knowledge to minimize
the influence of noise and imaging artifacts in the underlying
velocity images. This a-priori knowledge can e.g. be given
by the incompressible form of the continuity equation, also
known as the divergence-free condition. The fulfillment of
the physical a-priori knowledge is normally achieved by
minimizing an error function, which consists of the weighted
sum of the distance to the measured velocity images and
the distance to a perfect fulfillment of the physical a-priori
knowledge. Thereby, adjusting the method by changing the
weights inside the error function is possible. However, by
still using the discrete velocity images, the degrading effects
of applying discretized Navier-Stokes equations are still
present.

On the other hand, continuous functions can be used
to represent the blood flow velocity images [8], [22] or
the pressure gradient data [10], [11]. Up to now, these
techniques only incorporate physical a-priori knowledge as
an implicit property of the basis functions. Skrinjar et al.
[22] for instance use divergence-free radial basis functions.
These techniques of continuous representation overcome the
drawbacks of discretized Navier-Stokes equations. However,
unlike the methods mentioned in the last paragraph, they lack
the possibility of choosing the weighting between physical
a-priori knowledge and measured data. This could possibly
lead to solutions which differ too much from the original
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measurements in favor of completely fulfilled physical a-
priori knowledge.

Therefore, we propose a method of combining both ap-
proaches by using regularization with arbitrarily weighted
physical a-priori knowledge and representation using con-
tinuous functions. Thus, we want to achieve robust MRI-
based blood flow velocity measurements and blood pressure
gradient computations. In the present work, we investigate
an exemplary specification of such a regularization model
using continuous polynomial functions, the divergence-free
condition as physical a-priori knowledge and a genetic
algorithm for minimizing the error function. We use PC-
MRI measurements of steady flow in a physical phantom
to assess the influence of the polynomial order and of the
weights inside the error function on the quality of velocity
and pressure gradient data.

II. METHODS

A. Polynomial Regularization

We acquire three-dimensional, time-resolved images
of three-directional flow velocity vectors using PC-
MRI. The velocity images are given as discrete
voxels (x, y, z) with velocity vectors V (x, y, z) =
(Vx(x, y, z), Vy(x, y, z), Vz(x, y, z)). In order to minimize
the influence of image noise and artifacts on the velocity
data and the subsequent pressure gradient computation,
we apply our approach of polynomial regularization. Each
component of the discrete velocities V is represented
by a continuous polynomial function V̂x, V̂y and V̂z of
equal order o. The polynomial functions V̂ = (V̂x, V̂y, V̂z)
depend on unknown coefficients, which are computed by
minimizing an error function

F = λ1f1 + λ2f2 (1)
f1 = ‖V̂ − V ‖ (2)
f2 = ‖∇ · V̂ ‖ . (3)

The distance to the measured velocities V is represented
by f1. As physical a-priori knowledge, the divergence f2
of the resulting polynomial functions is taken. This value
is known to be zero for real incompressible flows. The
weight factor λ = λ2

λ1
adjusts the weighting between the two

parts of the error function. We minimized the error function
using a genetic algorithm as proposed by Jiraraksopakun
et al. [20], [21]. This iterative algorithm produces a set of
possible solutions, mutates and combines them and selects
the best solutions for the next iteration according to their
fitness function. The initial values for the unknown polyno-
mial coefficients were computed using QR-factorization. A
population size of 20 possible solutions and a fixed number
of 50 maximum iterations were used. All data analysis was
performed in MATLAB (Mathworks, Inc.).

B. Pressure Gradient Computation from Velocity Images

If blood is modeled as an incompressible, Newtonian fluid
and laminar flow is assumed, the momentum conservation of
the Navier-Stokes equations is given by

G := ∇p = − ρ∂V
∂t
− ρ(V · ∇)V + µ∇2V + b , (4)

where the body forces b are normally neglected. Using the
blood’s density ρ and viscosity µ, the pressure gradient G
can be computed from the velocities V . For the computation
of pressure gradients from the discrete velocities V , we
discretized (4) using central differences. In contrast, pressure
gradients from the continuously represented velocities V̂
were computed using (4) with analytical derivations.

C. Evaluation Using PC-MRI of a Physical Phantom

Using a standard clinical 1.5-T whole-body system
(Avanto, Siemens, Erlangen, Germany) and a clinical time-
resolved three-directional PC sequence (VENC=100 cm/s),
we performed velocity-encoded MRI acquisitions of steady
flow in a phantom [23] which mimics a stenotic human
vessel. We measured 30 time frames with a temporal res-
olution of 32 ms. The velocity vectors in an image volume
of 20x20x20 voxels with a reconstructed voxel size of
1.55x1.55x2.1 mm3 covering the entry region of the stenosis
were extracted. By this means, we obtained the velocity
vectors V for one arbitrarily chosen time frame and the
temporal mean V̄ of the velocity vectors over all time frames.
Using the discretized version of (4), we computed pressure
gradient values G from the velocities V and Ḡ from the
velocities V̄ . Furthermore, we computed the polynomial
functions V̂ from the given noisy velocity data V by applying
our approach of polynomial regularization. Afterwards, we
derived the pressure gradients Ĝ from V̂ using the analytical
version of (4).

Since the temporally averaged velocities suffer less from
image noise, V̄ and Ḡ are assumed to be of higher qual-
ity than V and G. Thus, we computed the error fraction
EV = R(V̂ )/R(V ) using the root mean squared error R(V )
between V and V̄ and the root mean squared error R(V̂ )
between V̂ and V̄ , in order to evaluate the performance of our
approach. For the pressure gradients, an analog derivation of
EG was performed. For these computations, the continuously
represented data V̂ and Ĝ were sampled with the spatial
resolution of the discrete fields V and G. An error fraction of
EV < 1 and EG < 1 indicates an error reduction created by
the use of polynomial regularization. As an additional quality
criterion, we computed the root mean squared divergence
d of the velocity fields V , V̄ and V̂ . Since the divergence
should be zero in an incompressible flow, lower values of d
indicate higher quality of the velocity fields. We investigated
the influence of the polynomial order o and the weight factor
λ in the minimized error function (o = {4, 7, 10, 13}, λ =
{0, 5, 10, 15}).
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III. RESULTS
Fig. 1 shows the velocities on a central slice through

the phantom, whose longitudinal axis is parallel to the y-
direction. Fig. 1(a) depicts the velocity magnitudes |V | of
one time frame and Fig. 1(b) the mean velocity magnitudes
|V̄ | over all time frames. As expected, the velocity inside
the stenosis (y=30mm) is increased compared to outside
the stenosis (y=0mm) and generally declines towards the
vessel wall (x=0mm, x=30mm). In the velocities |V̂ | after
polynomial regularization (o=13, λ=15), the errors caused by
the image noise are reduced compared to |V | (see Fig. 1(c)).
The maximum difference to |V̄ | decreases from 31.84 cm/s
for |V | to 17.43 cm/s for |V̂ |.
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Fig. 1. Magnitude of flow velocity: (a) one time frame: |V |. (b) mean over
all time frames: |V̄ |. (c) one time frame with polynomial regularization: |V̂ |.

The error fractions for different polynomial orders o and
weight factors λ are depicted in Fig. 2. In every case, the
error fractions EV for the velocity and EG for the pressure
gradient are significantly smaller than 1, thereby showing
that polynomial regularization decreased the errors caused
by the noisy MRI data. The mean error fraction over all
orders o and weight factors λ is EV =0.55 and EG=0.40,
which corresponds to a reduction of the root mean squared
errors by 45% and 60%. Thus, the improvement created by
our approach is stronger in the pressure gradient than in the
velocity data.
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Fig. 2. Error fractions of velocity (EV ) and pressure gradient (EG) after
application of polynomial regularization.

The error fractions decrease with higher orders o and are
only marginally influenced by the weight factors λ, whose
impact on the divergence d of the resulting velocity fields V̂
is shown in Table I. Smaller divergence values are achieved
if higher weight factors are used. This effect is stronger in
polynomials with lower orders. Furthermore, the divergence
values are generally higher if higher orders o are used.
All divergence values of V̂ are significantly lower than the
divergences without polynomial regularization (V : d=37.74
1/s, V̄ : d=13.95 1/s).

TABLE I
DIVERGENCE OF VELOCITY FIELDS

o=4 o=7 o=10 o=13

λ=0 1.08 / 100% 2.59 / 100% 3.96 / 100% 6.03 / 100%
λ=5 0.49 / 45.4% 2.47 / 95.4% 3.92 / 99.0% 6.02 / 99.8%
λ=10 0.51 / 47.2% 2.43 / 93.8% 3.85 / 97.2% 5.95 / 98.7%
λ=15 0.47 / 43.5% 2.42 / 93.4% 3.87 / 97.7% 5.94 / 98.5%

Root mean squared divergence of the velocity field V̂ . Values are shown
in [1/s] and in percentage of the corresponding values with λ=0.

Fig. 3 shows the pressure gradient magnitudes along the
vessel axis. As expected, the data |G| shows higher image
noise than |Ḡ|. Applying polynomial regularization (o=13,
λ=15) minimizes the influence of noise in |Ĝ| and decreases
the maximum difference to |Ḡ| along the vessel axis from
1.597 mmHg/m for |G| to 0.391 mmHg/m for |Ĝ|.
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Fig. 3. Magnitude of the axial pressure gradient along the vessel axis: mean
over all time frames (|Ḡ|, solid), one time frame without (|G|, dotted) and
with (|Ĝ|, dashed) polynomial regularization.
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IV. DISCUSSION

As expected, the measured velocities and derived pressure
gradients of one time frame of the MRI acquisition of the
physical phantom show stronger errors than the temporal
mean of all time frames. These errors were decreased in
all performed experiments by applying our approach of
polynomial regularization. Higher polynomial orders o lead
to smaller errors concerning the error fractions EV and
EG, but they increase the divergence d of the resulting
velocity field. Therefore, a trade-off between these quality
criteria concerning the choice of the polynomial order has to
be addressed. Higher weight factors λ further decrease the
divergence d. This effect is less visible for higher orders o,
possibly related to the fixed number of iterations used for
the genetic algorithm. Therefore, we plan to perform further
investigations concerning this issue.

Overall, the presented evaluations show the general ap-
plicability of our approach of polynomial regularization. In
the future, we want to perform further tests using MRI data
of patients and healthy volunteers. Extending the theory
of our approach to pulsatile flow is straight forward, but
increases the computation times and could necessitate faster
implementations. Furthermore, our presented investigations
only form preliminary results for one exemplary specifica-
tion of combining regularization and representation using
continuous functions. We plan to investigate trigonometric,
exponential or radial basis functions and additional criteria
for the physical a-priori knowledge such as similar flow
through adjacent vessel cross sections and no flow through
the vessel wall. Thereby we want to further investigate
if approaches of combining regularization with arbitrarily
weighted physical a-priori knowledge and representation
with continuous functions are successful in improving the
accuracy of MRI-based blood flow velocity measurements
and blood pressure gradient computations under realistic
conditions.
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[19] G. Farnebäck, J. Rydell, T. Ebbers, M. Andersson, and H. Knutsson,
”Efficient Computation of the Inverse Gradient on Irregular Domains,”
IEEE 11th International Conference on Computer Vision (ICCV), pp.
1-8, 2007.

[20] Y. Jiraraksopakun, M. McDougall, S. Wright, and J. Ji, ”A regularized
flow quantification method using MRI tagging and Single Echo Acqui-
sition imaging,” 30th Annual International IEEE EMBS Conference,
pp. 3397 -3400, 2008.

[21] Y. Jiraraksopakun, M. McDougall, S. Wright, and J. Ji, ”A Flow
Quantification Method Using Fluid Dynamics Regularization and MR
Tagging,” IEEE Transactions on Biomedical Imaging, vol. 57, pp.
1437-1445, 2010.

[22] O. Skrinjar, A. Bistoquet, J. Oshinski, K. Sundareswaran, D. Frakes,
and A. Yoganathan, ”A divergence-free vector field model for imaging
applications,” Proceedings of the Sixth IEEE international conference
on Symposium on Biomedical Imaging: From Nano to Macro. IEEE
Press, pp. 891-894, 2009.

[23] M. Delles, F. Rengier, S. Ley, H. von Tengg-Kobligk, H.-U. Kauczor,
R. Unterhinninghofen, and R. Dillmann, ”Influence of imaging quality
on magnetic resonance-based pressure gradient measurements,” Proc.
SPIE Medical Imaging, vol. 7626, p. 762624, 2010.

6832


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

