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Abstract— We present a novel method for the identification
of the dynamics of physiological cardiac cell models. The main
aim of the technique is to improve the computational efficiency
of large-scale simulations of the electrical activity of the heart.
The method identifies the dynamical attractor of a detailed
physiological model using statistical learning techniques. In
particular, a radial basis function regression method is used
to capture the intrinsic dynamical features of the model, thus
reducing the computational cost to quantitatively generate
cardiac action potentials in a wide range of pacing conditions.
The approach permits to recover key properties such as the
action potential morphology and duration in a wide range of
pacing frequencies.

I. INTRODUCTION
Modeling the electrical activity of the heart is essential in

order to gain further insight into the biophysical mechanisms
underlying heart function and disease. At the cellular level,
single-cell models describe the evolution of the cell mem-
brane potential in terms of a set of ionic currents flowing
across the myocyte.

Since the first model of a cardiac cell by Noble [1], an
increasing number of cardiac cell models have been proposed
in the literature [2]. Realistic single-cell models include
detailed biophysical mechanisms of the membrane channels,
providing a powerful tool to study clinical conditions asso-
ciated to anomalous function of specific ion channels [3].

The incorporation of additional features, however, in-
creases the complexity of the model which in turn raises
the computational demand of multidimensional simulations
of the cardiac tissue [4], [5]. Therefore, the complexity of the
model should be chosen in terms of the particular questions
to be addressed, assuming a compromise between the scale
of the multicellular simulations and the level of detail of the
single cell model.

A recent approach to address these problems is to formu-
late either empirical or simplified models [6]–[8]. Multidi-
mensional optimization methods are then used to determine
the model parameters that optimally reproduce the observed
action potential (AP) morphology under different conditions.
This approach presents two main drawbacks. On one hand,
both simplified and empirical models typically use effective
transmembrane currents which might not be related to ionic
species, making it difficult to analyze the results. On the
other, simple models contain some dynamical regimes of the
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observed system but are not necessarily able to explore the
whole dynamical richness observed experimentally. Indeed,
since single-cell APs present a variety of morphologies
depending on the past and present pacing conditions, these
methods tend to fail when predicting the emergence of new
dynamical scenarios such as oscillatory regimes or cardiac
alternans.

A practical approach to reduce the computational cost of
realistic, large-scale simulations is to avoid the integration of
the single-cell models by using a pattern recognition method
to identify the intrinsic dynamical features of the cell re-
sponse [9]. In a first stage, an identification system learns the
dynamics of the biophysical model under different scenarios.
Once the response of the model has been identified, the
recognized dynamics can be used to predict future values
of the membrane potential [10]. Identification of unknown
nonlinear systems is also widely used in control engineering
[11] and has been successfully used in the prediction of
nonlinear time-series in areas such as weather forecasting
[12]. Recent attempts to use similar methods in the area
of cell modeling can be found in Ref. [13]. This approach
requires ensuring the generalization of the procedure, namely
that the method is able to provide correct predictions in
situations that have not been explicitly included during the
learning stage.

In this work we combine statistical learning and phase-
space reconstruction methods to identify the nonlinear sys-
tem underlying the generation of cardiac action potentials
(AP) in cardiac single-cell models. Phase-space reconstruc-
tion methods are based in Taken’s theorem, which states that
under certain conditions the multidimensional structure of a
nonlinear dynamical system can be identified from observed
data [14]–[17].

The structure of the paper is organized as follows: In
Section II we provide a detailed description of the model
identification method and introduce the reference biophysical
model used for testing the performance of the approach. The
main capabilities of the technique are described in Sec. III,
where we report examples of estimated AP morphology and
duration under different pacing regimes. Finally, a discussion
about the potentialities of the method and an exposition of
further improvements is presented in Section IV.

II. MATERIALS AND METHODS
A. Model Identification method

The support vector regression (SVR) method performs a
linear regression of the data in a feature space [10]. In a first
stage, a mapping function is used to project the data into a
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Fig. 1. Description of the basic stages of the method.

higher dimensional feature space. Next, linear regression in
the feature space is performed in order to construct a model
of the observed data. More specifically, ε-SV regression
constructs a function in the feature space whose deviation
from the projected objective function is at most ε. Such
method yields a set of support vectors that define a tube
of radius ε around the function being estimated [18]. SVR
has been widely used to estimate non-linear time series [19]
since it avoids overfitting of the training data while exhibiting
a good overall performance.

The proposed method comprises two stages: training and
prediction. A general description of the approach is described
in Fig. 1. On the training stage, the training data provided
to the SVR method consists in a set of results from the
numerical simulation of the model to be studied. Since in
our case the objective function is the membrane potential
V (t), we provide a set of time-delayed values of the model
simulation, more specifically the three past cell membrane
potential values V (t − 3τ), V (t − 2τ), V (t − τ), the action
potential duration (APD) and diastolic interval (DI) of the
last stimulation cycle, the stimulation current, and the time
elapsed since the last stimulus. The delay time τ is chosen
heuristically from a knowledge of the internal time scales
of the model, thus providing a set of weakly correlated
simulation samples [17]. The rationale behind using a time-
delayed set of previous membrane potential values to forecast
V (t) is inspired in phase embedding methods where the
attractor dynamics is identified from a set of time delayed
values of the scalar measurements [14]–[17]. The SVR then
computes a set of support vectors in the kernel space that
allow it to estimate the function V (t).

In the prediction stage, an estimate of V (t0 + τ) is
obtained from the support vectors and a set of initial data
V (t0 − 3τ), V (t0 − 2τ), V (t0 − τ), APD and DI of the
last stimulation cycle, the stimulation current, and the time
elapsed since the last stimulus. From this time on, the method
uses its own predicted values in order to predict future values.

We have used an implementation of the ε-SVR method
included in the package Kernlab [20] of the R [21] environ-
ment, with a Gaussian radial basis kernel function and with
error radius ε = 0.01.

B. Case example: Identification of ten Tusscher’s model

The ten Tusscher model provides a detailed description
of human ventricular tissue and can be used to simulate
epicardial, endocardial, and midmyocardial cells [22], [23].
The model has a total of 17 variables among which 12
correspond to the dynamics of ion channels. It is widely used
in the area since it closely reproduces experimental measures
and simulates the electrical activity of single cells as well as
1D cell rings and 2D tissue sheets. Therefore we have chosen
ten Tusscher’s model as the reference model for testing our
approach.

In particular, we have used the model configuration that
corresponds to epicardial cells with a maximum restitution
slope of 1.1. Restitution measures the relationship between
APD and DI. This relationship strongly depends on the
stimulation sequence applied to the cell model. Two of the
most commonly used stimulation protocols are the dynamic
stimulation protocol [24] and the S1-S2 restitution pacing
protocol. We have numerically simulated ten Tusscher model
with both stimulation protocols in order to obtain a predictor
as general as possible. Specifically, dynamic protocol has
been applied with stimulation periods ranging from 1000
ms to 200 ms whereas S1-S2 protocol has been applied
with a basic cycle length (BCL) of 600 ms and S2 diastolic
intervals ranging from 700 ms to 20 ms. In both cases we
have followed the parameters used in [23] in order to obtain
comparable results. A combination of data from simulations
using both dynamic and S1-S2 stimulation protocols is
used for training, so that a single SVR is trained for both
protocols.

An integration step of ∆t = 0.02 ms has been used to
integrate the ten Tusscher model with suitable precision. To
construct the embedding training data we have chosen a time-
lag τ = 1 ms.

III. RESULTS
A. AP morphology

Dynamic protocol: The AP data predicted by our method
as a response to a dynamic stimulation protocol accurately
reproduces the AP simulated by ten Tusscher’s model as
can be seen in Fig. 2. Note that both normal (Fig. 2a) and
alternans (Fig. 2b) AP cycles are properly estimated. The
normalized root mean square error (NRMSE) is 1.57%, with
1134 support vectors.

S1-S2 protocol: The AP prediction for S1-S2 stimulation
protocol at BCL=600 ms also reproduces the AP of ten
Tusscher’s model, as displayed in Fig. 2c. Both S1 and S2
cycles are accurately estimated, with a NRMSE of 3.84%.
Apparently S1-S2 cell response is harder to predict than
dynamic protocol response, as the only clue of a new S2
cycle is a different DI in the previous cycle. In our opinion
this is the cause of the slightly larger prediction error on
S1-S2.

B. APD restitution

Dynamic protocol: The restitution curves obtained by our
prediction method accurately recover the dynamic restitution
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Fig. 2. Estimated AP morphology under different stimulation protocols.

curves of ten Tusscher model as can be seen in Fig. 3.
Remarkably, our approach predicts AP alternans as shown by
the bifurcation at the lower left corner of Fig. 3. In summary,
our prediction method properly reproduces the restitution of
cardiac cells under dynamic stimulation protocol, presenting
a NRMSE of 1.182%.

S1-S2 protocol: Our prediction method also reproduces
APD restitution curve under S1-S2 protocol with accuracy,
as depicted in Fig. 4. The overall error in APD restitution
under S1-S2 stimulation protocol is 1.437%, while the error
in estimating the diastolic interval is 1.225%.

C. Adaptation to different stimulation conditions

A final experiment has been performed to predict the
cardiac cell response at pacing frequencies that have not
been previously used in the training stage. The results for
both dynamic protocol (NRMSE=1.72%) and S1-S2 protocol
(NRMSE=6.24% at BCL = 420 ms) indicate that our method
correctly generalizes the model dynamics, being able to
reproduce responses to different stimulation sequences.

IV. CONCLUSIONS AND DISCUSSION

A. Conclusions

In this paper a new approach is presented to reproduce the
dynamics of a cardiac cell electrical activity by learning it
from sample data. The approach accurately reproduces the
AP morphology with a low error rate, as well as the APD
restitution curves, for the two main stimulation protocols.
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Fig. 3. Simulated and predicted APD restitution curves of the dynamic
pacing protocol.

It is also able to generalize and predict the cell response
under different pacing frequencies, correctly identifying and
reproducing cell dynamics under different conditions.

B. Discussion

Although we have used ten Tusscher’s model to test the
performance of the method, the approach could also be
used to identify the dynamics of more detailed models and
even to directly learn from electrophysiological recordings
at the cellular level. It is also possible to incorporate more
physiological variables to the training stage so that the
method can predict the behavior of myocytes of different
species.

One of the most promising features of our method is
that it provides detailed cell simulations at very low com-
putational cost. Indeed, the time step of both learning and
reconstruction stages is τ , much larger than the time step
required to simulate ten Tusscher’s model. In our simulations,
τ = 1 ms whereas ∆t = 0.02 ms, which scales down the
computational cost by a factor of 50. However, direct runtime
comparisons are not yet available since ten Tusscher’s model
has been implemented in C and our method in R.

Furthermore, due to the simplicity of the method’s internal
state (three last potential values, last APD and DI and time
since last stimulus), it should be easy to parallelize its
execution, or even to keep a cache of the most frequent states
and their output. These techniques would further reduce the
time required to run large scale simulations at tissue level.
Moreover, it is also possible to start a simulation at the
desired pacing frequency, thus avoiding the usual procedure
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Fig. 4. Simulated and predicted APD restitution curves corresponding to
the S1-S2 stimulation protocol

of starting simulations of the model at lower frequencies and
slowly increase them to let the model adapt its internal state.

C. Further work

Once we have tested our method using a detailed cell
model, we plan to use our approach to identify other phys-
iological models or even use experimental data to drive
the training stage. Further improvement can be achieved
by computing the time-delayed mutual information of the
simulated data [17] to automatically determine an optimal
time lag τ for the embedding approach.

Finally, we plan to perform 1D tissue simulations to
determine conduction velocity and to further validate the
method. Afterwards, we would develop 2D tissue simulations
to study spiral waves, which are important for fibrillation and
arrhythmias. Indeed, both 2D and organ-level 3D simulations
would take advantage of the performance improvements of
our method.
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