
  

  

Abstract— An immediate challenge in integrated genomic 
analysis involving several types of genomic factors all measured 
genome-wide is the ultra-high dimensionality. Screening all 
possible relationships among the genomic factors is an NP-hard 
problem; therefore in practice proper dimension reduction is 
necessary. In this paper we develop the Phenotype-Driven 
Dimension Reduction (PhDDR) approach to the analysis of 
gene co-expressions, and discuss its extensions to integration of 
other genetic factors. This approach is then illustrated by an 
application to gene co-expression analysis of treatment 
response of childhood leukemia. 
 

I. INTRODUCTION 

Recent advancement of biotechnologies has enabled 
investigators to either directly measure, or derive, on 
genome-wide scale diverse types of genetic and epi-genetic 
factors in a large number of experimental units. The 
mountains of genomic data now provide opportunities to 
integrate different types of genomic information for a more 
comprehensive understanding of the underlying genomic 
processes affecting important health-related phenotypes. 
Two equally important and tightly related components in 
this process are genomic data integration and integrated 
analysis of genomic associations. Genomic data integration 
deals with efficient storage, cross reference, literature 
linkages, retrieval, and visualization of all types of genomic 
data. Integrated analysis of genomic association deals with 
effective statistical inferences to discover relationships 
between genomic factors and phenotypes of interest, as well 
as relationships among the genomic factors themselves; 
thereby elucidate the underlying genomic process affecting 
the phenotypes. Data integration facilitates integrated 
analyses. This paper is concerned with integrated analysis.  

An integrated genomic association analysis beginning 
with the various genomic factors measured genome-wide 
encounters immediately the challenge of ultra-high 
dimensionality. Even with two types of genomic factors 
involved, say mRNA expressions for which the number of 
expression probes (EPs) is typically on the order of 2x105, 
and SNPs the number of which is typically 9x106, so the 
total number of all possible SNP-EP pairs is approximately 
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2x1012; clearly exhaustive screening of all possible 
combinations of all measured genomic factors is an NP-hard 
problem. Moreover, these genomic factors are usually 
measured on several hundred to a few thousand individuals. 
Often exhaustive screening of even all possible pairs is 
prohibitive for the computing resource in a typical academic 
research institution. Typically some reduction has to be 
performed prior to analysis, such as focusing only on cis 
SNPs for each EP.  

In a cancer genomic study there is often a biological 
context defined by one or more phenotypes of interest; for 
example, to search for inter-related genomic factors jointly 
affecting the response to remission induction (a phenotype) 
in a cohort of uniformly treated patients. The specific 
biological context provides an opportunity to perform the 
effective and biologically meaningful Phenotype-Driven 
Dimension Reduction (PhDDR). The PhDDR approach 
starts with searching phenotype-specific gene co-expression 
sets and then extends to other types of genomic factors; 
whereby effectively circumvent the difficulties of ultra-high 
dimensionality in integrating massive numbers of different 
types of genomic factors into an association analysis.  

We illustrate the PhDDR approach in Section II by the 
analysis of phenotype-specific gene co-expressions and 
discuss extensions to integrate other types of genomic 
factors. In Section III a validation inference for the 
discovered Phenotype-Specific Gene Co-Expression Sets 
(PheGCES) is developed. The use of PhDDR-PheGCES is 
illustrated by an application to a gene co-expression study in 
childhood leukemia in Section IV. Further discussion on 
extensions to integrate diverse types of genomic factors and 
some concluding remarks are made in Section V.  

 

II. PHENOTYPE-SPECIFIC GENE CO-EXPRESSION DETECTION  
A major component of contemporary cancer genomics is 

to understand how gene (mRNA) expressions and co-
expressions are related with complex, clinically important 
phenotypes. One approach is to first construct co-expression 
networks or clusters [1]–[5], and then test if any of the 
modules are associated with the phenotypes. Exhaustive 
search to construct co-expression networks is NP-hard in 
terms of the total number of expression probes (EPs); the 
available methods are still computationally difficult for large 
number EPs (2x105); and it is often difficult and subjective 
to determine a proper number of clusters in a study.  

In contrast, the PhDDR approach begins with testing the 
associations between each individual EP and the phenotype. 
Effective and biologically meaningful dimension reduction 
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is done by considering the top EPs significantly associated 
with the phenotype by proper statistical significance criteria. 
Then the Phenotype-Specific Gene Co-Expression Sets 
(PheGCES) are constructed using the top phenotype-
associated EPs as leads.  A PheGCES is a co-expressed gene 
cluster associated with the phenotype of interest; the 
association can be further validated externally with 
independent validation data (see Sections III and IV) or 
internally with an internal validation inference [6].  

To describe the PheGCES detection algorithm it is 
necessary to introduce some notation first. Let n be the 
number of experimental units (sample size), and m be the 
number of EPs. Let Xi be the vector of expression data of the 
ith EP (i=1,2,…,m); each Xi is a n-vector, the jth component 
of Xi is the expression level of the ith EP in experimental 
unit j.  Let Y1, Y2, …, Yn be the observed phenotype values; Yj 
is the phenotype value of experimental unit j. 
 

Algorithm 1: Detection of PheGCES 
 

1. For each EP, test its association with the phenotype; 
obtain a phenotype-association P value for each EP. 

2. Sort the EPs according to the above-obtained P values in 
ascending order. 

3. Use the P values to select top phenotype-associated EPs 
by some statistical significance criteria. Let R be the 
number of selected EPs, and Xk

* (k=1,…,R) be the 
expression data vectors of these EPs. 

4. Detect co-expression clusters. Specify a positive 
correlation threshold ρ>0.   

 Set nc=0; 
 REPEAT for k=1,…,R 
 IF (the EP corresponding to Xk

* is not in any  
 PheGCES yet) THEN 

Put the EP into the current PheGCES; 
nc=nc+1; 
REPEAT for i=1,…,m  

IF (ith EP is not in any PheGCES yet) THEN 
Compute the correlation coefficient 
r(Xi , Xk

*) of the expression vectors  
Xk

* and Xi; 
 IF r(Xi , Xk

*)≥ ρ THEN 
 Put ith EP into the current PheGCES; 

END.IF 
END.REPEAT 

END.IF 
END.REPEAT 

 

Depending on the data type of the phenotype, established 
methods are available to test the expression-phenotype 
associations [7]–[8]. Likewise a number of established 
methods are available for significance inference in Step 3 
[9]–[12]. The number of selected top EPs, R, is typically on 
the order of 102-103. Hence the PhDDR starting with EPs 
can reduce the dimension of the EP space from the order of 
105-106 to typically 102. In Step 4 nc records the current 
PheGCES number; at the end it is the number of PheGCES’s 
detected. Either Pearson’s or Spearman’s (rank) correlation 
can be used for the correlation coefficient r(Xi , Xk

*). It can 
be seen from the algorithm that each PheGCES has a “core” 

EP which is one of the top phenotype-associated EPs 
determined in Step 3, and each EP in the PheGCES is 
positively correlated with the core EP at the level at least ρ. 
 Integration of other types of genomic factors can be done 
straightforwardly: The inner loop “REPEAT for i=1,…,m” 
searching in the EPs can as well be performed among other 
types of genomic factors, such as microRNA expressions, 
methylation levels, and SNPs (coded as AA=0, AB=1, 
BB=2). The inclusion condition “r(Xi , Xk

*)≥ ρ” may need to 
be modified for this extension. For example, to incorporate 
the biological intuition that DNA methylation may down 
regulate gene expression, use “–r(Xi , Xk

*)≥ ρ” for each 
methylation EP data vector Xi. On the other hand if there is 
no reason to apply any restriction, then replace r(Xi , Xk

*) by 
its absolute value in the condition. The search can be 
repeated for each type of genomic factors interrogated in the 
study. In the end each “PheGCES” so constructed is a set of 
related genetic and epi-genetic factors associated with the 
phenotype of interest through the core EP, and defines the 
vertex set of a local genomic association network for the 
locus (gene) represented by the core EP. Formally the 
network is an edge-weighted labeled graph with vertices 
labeled by the genomic factors and edges weighted by pair-
wise correlations. Specific biological interpretation of such a 
local genomic network is application dependent.  Generally 
speaking however, such a phenotype-associated local 
genomic network shows how a gene’s effect on the 
phenotype is brought by the joint actions of the related 
genomic factors, as part of the underlying molecular-cellular 
process affecting the phenotype.   

Of practical importance is the selection of a correlation 
threshold ρ for the inclusion condition. A preliminary 
simulation study showed that the findings can remain stable 
for the moderate threshold values 0.2 to 0.4; the number and 
contents of the detected co-expression sets are more 
sensitive to stringent threshold values 0.6 to 0.9 (data not 
shown). Clearly the operating characteristics will largely 
depend on the data. In practice one can try a few threshold 
values (e.g., 0.3, 0.5, and 0.7) and compare the findings. It 
would be desirable to have a data-adaptive procedure to 
select this threshold, such as one similar to the statistical 
significance threshold criteria Ip [9]; this is still an open 
problem at this point. 

III. VALIDATION INFERENCE 
The PheGCESs are constructed by a search specific for 

“high” correlations with EPs significantly associated the 
phenotype. A statistical concern of this search from the 
machine learning standpoint is “overtraining” that may lead 
to a high number of false positive findings. This can be 
addressed by a validation inference internally [6], or 
externally on an independent validation dataset. We now 
describe an external validation procedure below; first some 
additional notation. 

Let Nk be the number of EPs and J1, J2, …, JNk be the 
indices (identifiers) of the EPs in the kth PheGCES. Let Dj

T 
be the direction of association between the phenotype and 
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the jth EP from the training dataset,  j=J1, J2,…, JNk.  
 

Algorithm 2: Validation P value of PheGCES 
 

1. For every EP, test its association with the phenotype 
on the validation dataset; obtain a phenotype-
association P value for each EP on the validation set. 

2. Sort the EPs according to the above-obtained P values 
in ascending order. 

3. For the kth PheGCES, let Dj
V be the direction of 

association between the phenotype and the jth EP on 
the validation dataset, and Rj be the jth EP’s rank on 
the order determined in Step 2, for j=J1, J2,…, JNk. 
Compute the PheGCES rank score statistic  
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where I() is the indicator function taking value 1 if the 
condition inside the parentheses is true, 0 otherwise; 
and m is the total number of EPs. 

4. The validation P value of the kth PheGCES is 
determined by Pk

V=1-F(Sk), with the cumulative 
distribution function F described below. 

5. Repeat Steps 3 and 4 for each PheGCES. 
 

Now each PheGCES has a validation P value (Step 4) 
measuring the statistical evidence for it is association with 
the phenotype on the validation set. The indicator function 
I() in the statistic Sk insists that an EP in a PheGCES 
contributes supporting evidence for validation only when its 
directions of association with the phenotype are the same on 
both the training and validation sets. The larger is the 
statistic, the stronger evidence for positive validation. The 
validation call for a PheGCES can be made based on its 
validation P value and the usual 5% significance level, or 
more conservatively after an adjustment for multiple tests.  

The validation P value is computed for testing the 
statistical null hypothesis that none of the EPs in the 
PheGCES is associated with the phenotype in the validation 
set. Under this null hypothesis the two directions of 
association agrees by chance; so the indicator I() follows the 
Bernoulli(0.5) distribution; and the ranks Rj are distributed 
uniformly over {1,2,…,m}. When m is large (typically >105) 
the cumulative distribution function of Sk under the null 
hypothesis is approximately 
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where b(·;N,p) is the Binomial(N,p) probability mass 
function, and G(·;a,b) is the cumulative distribution function 
of the Gamma(a,b) distribution. This is the F() function used 
in Step 4. Note F() has a jump at 0 and for x>0 it is a 
mixture of Gamma distributions (Figure 1, for Nk=4). 
 
 
 

FIGURE I 
The probability distribution to compute validation P value 

 

IV. AN APPLICATION TO CHILDHOOD ALL 
Childhood Acute Lymphoblastic Leukemia (ALL) is the 
most common pediatric cancer. One of the strongest clinical 
prognostic factors is the Minimal Residual Disease (MRD; 
[13]) at the end of remission induction. Biologically MRD is 
an indicator of in vivo resistance to chemotherapy. Gene 
expression profiling studies for MRD have revealed genes in 
the cell cycle and proliferation pathways [14]–[15]. To 
illustrate the above method we now present a PheGCES 
analysis for MRD. De novel leukemic blasts of 288 ALL 
patients were assayed using Affymetrix U133A GeneChip®. 
Quality MRD data were available on 189 patients. Although 
MRD data were incomplete on the remaining 99 patients, 
quality clinical outcome data (time to relapse, other adverse 
events, or the last follow up) were available. Because MRD 
is tightly related to outcome [13], the 99-patient cohort 
formed a natural validation set with time to relapse as a 
validation phenotype. With MRD as a binary variable 
(positive or negative at the end of remission induction) 
PheGCES detection was performed on the 189-patient 
training set (Algorithm 1): Differential expression of each of 
the m≈22,000 EPs (probesets) between MRD-positive and 
MRD-negative status was tested using the Wilcoxon rank-
sum test (Steps 1 and 2); The adaptive statistical significance 
threshold criteria Ip [9] was applied to select top probesets, 
223 probesets were selected (Step 3); using these top 
probesets, Spearman’s correlation, and ρ=0.8 (a stringent 
threshold), 188 PheGCES were found (Step 4). Out of these 
188 PheGCES, 26 contained more than 1 probsets. In the 
validation inference (Algorithm 2), association between risk 
of ALL relapse and gene expression was tested using a 
hazard rate regression model [16] (Steps 1 and 2); validation 
P value of each PheGCES was computed on the validation 
set (Steps 3, 4 and 5), where for each probeset  direction of 
expression-MRD association on the training set was the sign 
of the median expression in the MRD-positive group minus 
that in the MRD-negative group, and direction of the 
expression-relapse association on the validation set was the 
sign of the hazard regression coefficient. After the 
conservative Bonferroni adjustment for 188 tests, the 
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validation P value of PheGCES #65 and #70 reached the 
10% statistical significance level (Table 1).  
                                          TABLE I 
                  PheGCES result of the application to childhood ALL 
PheGCES
valid. P 
val. (Bonf. 
Adj.) 

Probe-set P val. 
MRD 

P val. 
Relapse 

Dir. 
MRD 

Dir. 
Relapse 

#65 
0.0003 

212021_s_at 0.0009 0.0048 -1 -1 

212023_s_at 0.0039 0.0028 -1 -1 
212020_s_at 0.0046 0.0000 -1 -1 
212022_s_at 0.0304 0.0069 -1 -1 

#70 
0.0751 

204026_s_at 0.0010 0.0010 -1 -1 

210559_s_at 0.0024 0.0860 -1 -1 
PheGCES #65 contained 4 probesets of the MKI67 gene 
which encode a nucleotide and ATP binding protein in the 
cell cycle regulation pathway; lower expression was related 
to positive MRD and higher risk of relapse. Two of the 4 
probesets were not among the top probesets determined by 
the Ip criteria, but they were strongly related to the risk of 
relapse in the validation cohort. PheGCES #70 contained a 
probeset of ZWINT and one of CDC2; the former is on the 
cell cycle regulation pathway and the latter encodes a 
nucleotide binding protein involved in cell division and 
regulation of cell cycle; again lower expression of these 
genes was related to positive MRD and higher risk of 
relapse. It is conceivable that all these are (possibly distant) 
genes on the cell cycle regulation and proliferation pathways 
supporting the leukemic cells’ survival when the cells were 
exposed to cytotoxic agents.  
 Another dimension reduction technique for EP-phenotype 
association analysis is the random coefficient (effect) 
regression model [17]. Applying this method to test the 
global association of the 22,000 EPs with the MRD, we 
obtained weak statistical significance P=0.0998.  

V. DISCUSSION AND CONCLUDING REMARKS 
We have developed the Phenotype-Driven Dimension 

Reduction (PhDDR) approach to integrated genomic 
analysis and illustrated its usage in gene co-expression 
analysis with an application to childhood ALL. When a 
study centers at a phenotype, PhDDR can achieve very 
effective dimension reduction in a way pertinent to the 
study’s biological context. We have also developed an 
inference procedure for external validation of the findings. 

Other dimension reduction techniques used in genomics 
include for example sparse canonical correlation [18]; but 
in order for this type of method computationally feasible, 
often great simplifications, such as assuming only 
diagonal covariance matrix, has to be made. Comparing to 
the existing methods [17] – [18], the PhDDR approach 
relies on fewer statistical assumptions, is more pertinent to 
the biological context defined by the phenotype, and more 
computationally efficient by avoiding manipulations of 
exceedingly large matrices.  

ACKNOWLEDGMENT 
We thank our colleagues at St. Jude Children’s Research 

Hospital, Dr. Dario Campana and Ms. Elaine Coustan-Smith 
for the interesting application and the MRD data, Dr. James 
Downing for  the gene expression data, and Dr. Stan Pounds 
for helpful discussions. We thank the referees for their 
constructive critiques that helped improve the paper much.  

REFERENCES 

[1] R. Xulvi-Brunet, and H. Li, “Co-expression networks: graph 
properties and topological comparisons,” Bioinformatics, vol. 26, pp. 
205–214, 2010. 

[2] W. Zhao, P. Langfelder, T. Fuller; J. Dong, A. Li, and S. Hovarth, 
“Weighted gene coexpression network analysis: state of the art,” J. 
Biopharm Statist, vol. 20, pp. 281–300, 2010. 

[3] J. Schafer, and K. Strimmer, “An empirical Bayes approach to 
inferring large-scale gene association networks,” Bioinformatics, vol. 
21, pp. 754–764, 2005. 

[4] B. Zhang, and S. Horvath, “A general framework of weighted gene 
co-expression network analysis,” Statist. Appl. Genetics Mol. Biol. 
Vol. 4, Article 17, 2005. 

[5] A. D. Gordon, Classification, 2nd ed. New York, NY: Chapman & 
Hall/CRC, 1999, ch. 2–3. 

[6] C. Cheng, “Internal validation inferences of significant genomic 
features in genome-wide screening,” Comput. Statist. Data Anal., vol. 
53, pp. 788–800, 2009.  

[7] M. A. Newton, A. Noueiry, D. Sarkar, and P. Ahlquist, “Detecting 
differential gene expression with a semiparametric hierarchical 
mixture method,” Biostatistics, vol. 5, pp. 155–176, 2004. 

[8] V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of 
microarrays applied to ionizing radiation response,” Proc. Natl. Acad. 
Sci. USA, vol. 98, pp. 5116–5121, 2001. 

[9] C. Cheng, S. Pounds, J. M. Boyett, D. Pei, M-L Kuo, and M. F.  
Roussel, “Statistical significance threshold criteria for analysis of 
microarray gene expression data,” Statist. Appl. Genetics Mol. Biol., 
vol. 3, Article 36, 2004.  

[10] A. Reiner, D. Yekutieli, and Y Benjamini, “Identifying  differentially 
expressed genes using false discovery rate controlling procedures,” 
Bioinformatics, vol. 19, pp. 368–375, 2003. 

[11] S. Pounds, and C. Cheng, “Robust estimation of the false discovery 
rate,” Bioinformatics, vol. 22, pp. 1979–1987, 2006. 

[12] D. B. Allison, and G. L. Gadbury, “A mixture model approach for the 
analysis of microarray gene expression data,” Comput. Statist. Data 
Anal., vol. 39 pp. 1–20, 2002. 

[13] E. Coustan-Smith, J. Sancho, F. G. Behm, M. L. Hancock, B. I. 
Razzouk, R. C. Ribeiro, G. K. Rivera, J. E. Rubnitz, J. T. Sandlund, 
C-H Pui, and D. Campana, “Prognostic importance of measuring early 
clearance of leukemic cells by flow cytometry in childhood acute 
lymphoblastic leukemia,” Blood, vol. 100, pp. 52–58, 2002. 

[14] C. Flotho, E. Coustan-Smith, D. Pei, S. Iwamoto, G. Song, C. Cheng, 
C-H Pui, J. R. Downing, and D. Campana, “Genes contributing to 
minimal residual disease in childhood acute lymphoblastic leukemia: 
prognostic significance of CASP8AP2,” Blood, vol. 108, pp. 1050–
1067, 2006. 

[15] C. Flotho, E. Coustan-Smith, D. Pei, C. Cheng, G. Song, C-H Pui, J. 
R. Downing, and D. Campana, “A set of genes that regulate cell 
proliferation predicts treatment outcome in childhood acute 
lymphoblastic leukemia”, Blood, vol. 110  pp. 1271–1277, 2007. 

[16] J. P. Fine, and R. J. Gray, “A proportional hazards model for the 
subdistribution of a competing risk,” J. Am. Statist. Assoc., vol. 94 pp. 
496–509, 1999.  

[17] J.J. Goeman, S.A. van de Geer, F. de Kort, and H.C. van 
Houwelingen, “A global test for groups of genes: testing association 
with a clinical outcome,” Bioinformatics, vol. 20 pp. 93–99, 2004. 

[18] D.M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix 
decomposition, with applications to sparse principal components and 
canonical correlation analysis,” Biostatistics, vol. 10 pp.515-534, 
2009. 

6840


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

