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Abstract— This paper shows a graph based method to analyze
proteomic expression data. The method allows the prediction
of the expression of genes not measured by the gene expression
technology based on the local connectivity properties of the
measured differentially expressed gene set. The prediction of
the expression jointly with the stability of this prediction as a
function of the variation of the initial expressed set is computed.
The method is able to correctly predict one third of the
proteins with independence of variations on the selection of the
initial set. The algorithm is validated through a Matrix-Assisted
Laser Desorption/Ionization Time of Flight Mass Spectrome-
ter (MALDI-TOF) protein expression experiment aiming the
study of the protein expression patterns and post-translational
modifications in human endothelial vascular cells exposed to
atherosclerotic levels of Low Density Lipoproteins (LDL).

I. INTRODUCTION

Most of the cellular processes and regulatory pathways of
the cell are controlled by networks of interacting proteins.
These networks determine how cells grow, divide, die, dif-
ferentiate and communicate with other cells. Thus, failure in
the docking of a pair of proteins, due to mutations in the
generating gene or to post-translational modifications, can
lead to malfunction of the corresponding process, impacting
the pathway functionality and ultimately leading to disorder
or disease.

The development of high-throughput technologies to dis-
cover new protein interactions has led to the need for cre-
ating and maintaining large protein-protein interaction (PPI)
databases. PPI information can be structured as a network of
interacting proteins. Such a network has a graph structure in
which nodes correspond to proteins and edges correspond
to interacting proteins. Different groups have contributed
to the creation of a large number of databases aiming to
settle a standard on the information content of each protein
interaction, including interaction evidence, source, type of
interaction, cross-references to ontologies and others (see [1]
for a review of the most important).
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The development of protein-protein interaction (PPI)
databases and their increasing level of annotation have al-
lowed the massive computational analysis of large inter-
actions networks ([2]), which has also been focused on
visualization methods and interactive query tools such as
Osprey ([3]). Commercial applications for the analysis of
PPI networks have also been promoted such as Ingenuity
Pathway Analysis (IPA, from Ingenuity Systems, Redwood
City, California, US). IPA and Osprey are usually regarded
as gold standards with which new methods compare.

In general, the application of the computational analyses
of these graphs is wide, from meta-analysis in genome
wide association studies, selection of candidate genes in
biochemistry and gene expression analysis. Many authors
have contributed to the application of graph theory concepts
to PPI networks in order to find topological differences
between disease genes and non-disease genes, and generally,
to the prediction genes related to phenotype ([4]). Some
authors claim that they were able to accurately predict
disease genes using features exclusively derived from PPI
network topology [5].

Some applications have been developed for the visualiza-
tion of combined PPI information and protein expression
data [2]. Certainly, there is evidence that protein-protein
interactions are related to mRNA coexpression [6], [7], [8].
Proteins that interact have expression profiles with a higher
degree of correlation that what would be expected by chance.
Interestingly, this correlation is not always positive; it can
be negative, suggesting inhibition, cleavage or proteolysis.
These results indicate that proteins that interact, or are
in the same local interaction environment, tend to have
correlated expression profiles. Furthermore, some methods
that combine gene expression data and PPI information for
candidate gene prioritization have been published [9]. The
authors of these combined methods claim to obtain better
results than using only PPI-based methods or expression-
based methods.

Gene expression is commonly studied through DNA mi-
croarrays. This technology allows for the investigation of
the transcriptional activity of several thousands of genes,
typically measuring the amount of mRNA expressed by each
coding sequence. However, there may exist a difference be-
tween the transcriptional profiles measured from the mRNA
expression profiles and the actual protein level in cells. High-
resolution two-dimensional gel electrophoresis (2DE) com-
bined with sensitive state of the art mass spectrometry tech-
nology provide the possibility of identifying the proteomic
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pattern of the cells in a specific pathophysiologic status. 2DE
methods separate proteins based on their isoelectric point in
the first dimension and their mass in the second dimension.

2DE gels show some technology specific issues that open
new opportunities for studying signal processing. Analysis
of these expression images must include image warping and
align correction, image fusion, spot detection, computation of
consensus spot patterns and extraction of expression profiles
jointly with spot identification [10]. The process is prone to
some issues like missing values or undetected spots, weak
spots, overlapping spots, resulting in some proteins that are
in fact non-detectable by the technology [11]. In general, all
protein expression technologies measure only a fraction of
the complete set of proteins present.

This paper proposes the use of protein interaction networks
for the enrichment of the information obtained by protein
expression techniques such as 2D-Gel electrophoresis. The
method mines protein relationships to guess non-measured
proteins that could be differentially expressed on the process
under study, based on the analysis of the local protein
interaction network that shows most relationship with the
differentially expressed subset.

II. MATERIALS AND METHODS

The proposed method is based on a post-processing of
the results of a protein expression experiment through the
enrichment of the expression profiles with protein interaction
information.

First, a set of candidate proteins is defined, which cor-
respond to the set of proteins that has shown significant
differential expression in the protein expression experiment.
The methodology proposes a set of new candidate proteins,
which contain proteins that were not identified in the pro-
tein expression experiment but the method considers to be
relevant.

The algorithm starts by creating the network of proteins
that connects all differentially expressed or candidate pro-
teins. In that network, all shortest paths between pairs of
candidate proteins are computed. These paths correspond to
the minimal proteomic pathways between candidate proteins.
Finally, a network that contains only this minimal pathways
is created. See Fig. 1 for a graphical general description
of the method. Because of the way the final network is
constructed it contains proteins with a high probability of
having a protein expression profile that is highly correlated
with the set of candidate proteins. Each of these steps is
explained in detail below.

First, a network that connects all candidate proteins is
constructed. This network is built by iteratively adding
interacting proteins to an initially disconnected network until
it is connected. At iteration I0, an initial network is created
by adding the candidate proteins P0. At each iteration Ii, all
proteins that show known interaction with the proteins added
in iteration Ii−1 are added to the network. This step continues
until either the network is connected or a maximum number
of iterations is reached. The maximum number of iterations
defines our maximum distance threshold. This distance is a
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Fig. 1. Block diagram of proposed methodology.

parameter of the algorithm that captures an observation scale
through the proteome.

The second step consists in calculating all shortest paths
between all pairs of candidate proteins. This is done by using
a modified version of Dijkstra’s algorithm that finds all short-
est paths between two nodes [12]. This is accomplished by
keeping a predecessor tree structure, instead of a predecessor
vector. In Dijkstra’s algorithm a relaxation occurs when the
current path is shorter than a previously calculated shortest
path for node v. Then, the predecessor of v is updated to be
in accordance with the new shortest path. In the modified
version, in addition to the normal relaxation, a new kind of
relaxation occurs when the current path has an equal length
than the previously computed shortest path. In this case a
new predecessor is added as a child node in the predecessor
structure for node v. Finally, minimal paths from node u to
node v are reconstructed by navigating the predecessor tree.
It is important to note that the set of minimal paths from u
to v form a graph. These paths are the minimal proteomic
pathways that connect candidate proteins.

In the third step the final network is generated by calculat-
ing the union of all minimal pathways. This graph consists
of the union of all the graphs of minimal pathways between
all pairs of candidate nodes. Since this network contains
only minimal proteomic pathways that connect candidate
proteins, it is in accordance with the literature that proteins
in this network have a high probability of having expression
profiles correlated with the expression of candidate genes
([6], [7], [8]). Thus, the method enriches the initial set
of candidate proteins with other proteins that could have
correlated expressions profiles and were not identified in the
protein expression experiment. We call this network minimal
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pathways network (MPN).

A. Validation

The quantitative validation of the method proposed was
performed from two points of view. First, a discovery rate
was calculated and used to assess the capability of the
method to discover candidate proteins that were purposely
removed from the initial set of candidates prior to the
application of the method. Second, a robustness index was
computed to assess the stability of the result under a change
on the initial set of candidates.

A three fold cross-validation was performed to test the
proposed method from two different points of view. The set
of candidate proteins was randomly divided in a training set
St comprising two thirds of the candidates and a validation
set Sv containing the other third of the candidates. The
training set St was used as input for obtaining a set of new
candidates: SMPN

c .
On the validation set, a discovery ratio was computed for

each tested method m as:

dm =
nm

|Sv|
(1)

where nm is the number of proteins of Sv that were found
by the method m. This procedure was repeated 50 times and
the samples of discovery ratios for the proposed method were
compared using a Mann-Whitney test.

To assess the robustness index of the tested methods,
50 pairs of cross-validation runs were compared and a
robustness index was calculated for each method m as:

ri j =
γ(Sti ,St j)

γ(Sm
ci
,Sm

c j
)

(2)

where γ is a function that measures the amount of change
between the two sets.

III. DATA

A. PPI data

Protein-protein interaction data was obtained from the Hu-
man Protein Reference Database (HPRD) [13]. This database
was downloaded, with permission of the owners, on May-
03 2010. The data comprised 38 756 interactions among
9 630 proteins. A number of custom methods were built
to transform this data to graph structure and to operate on
graphs through the R Language for Statistical Computing
[14].

B. Protein expression data

The protein expression data were obtained from an in vitro
cell culture study aimed to investigate the effect of high
concentrations of human Low Density Lipoproteins (LDL)
on the proteomic expression pattern of human endothelial
cells. After cell extraction, proteins were separated by 2D
gel electrophoresis, proteomic patterns were analyzed using a
devoted software (PDQuest, BioRad) and proteins were iden-
tified with a Matrix-Assisted Laser Desorption/Ionization
Time of Flight Mass Spectrometer (MALDI-TOF, GE-
Healthcare).

A total of 85 proteins were identified in the first stage.
A significant differential expression threshold was defined
as a case/control ratio over 3/2 or below 2/3. Fig. 2 shows
the distribution of the protein expression ratios. 39 proteins
showed significant differential expression. Of those, 35 could
be mapped to the HPRD database. This set of 35 were
defined as candidate proteins used as input for the proposed
methodology.
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Fig. 2. Distribution of ratio case/control in the differential protein
expression experiment data.

IV. RESULTS
The network formed by the union of all minimal proteomic

pathways between candidate proteins is shown in figure 4.
Considering all trials on the cross-validation, the mean

discovery rate for the MPN method is 0.32 for the validation
set, meaning that the method could find, in average, about
one third of the true candidate proteins that were extracted
from the initial set of candidates. Fig. 3 shows the distribu-
tion of the discovery rate for method MPN. To assess the
significance of this distribution, it was compared against a
null model consisting of paired random samples of proteins
in the HPRD interactome through a paired Wilcoxon test.
The test showed that the discovery rate of MPN is well above
that expected by chance pvalue = 2.98 ·10−9.

The stability measured as (2) for the results of the MPN
method is higher than the stability of the input candidate sets,
in a Wilcoxon paired test (pvalue < 2.2 ·10−16). This means
that the changes observed in the results yielded by the MPN
method are actually less important than the changes induced
in the input candidate set by the cross-validation process.

Both results demonstrate that PPI databases contain a
sufficient number of annotations in order to predict missing
protein expression from the 2D-Gel based identification
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Fig. 3. Distribution of discovery rate in 50 random samples. Discovery rate
is calculated as the amount of true positives found by the method divided
by the total amount of positives.

Fig. 4. The protein interaction network formed by the union of all shortest
paths between differentially expressed proteins. The size of the nodes is
proportional to their degree. The initial candidate proteins are marked in
red.

process. The stability test showed that the method’s results
are sufficiently stable unregarding the initial candidate set.
Although results have been computed for 2D-Gel MALDI-
TOF experiments, the methodology can be applied to any
gene expression methodology, including transcriptome anal-
yses through DNA-Arrays and exome data in genome-wide

studies.
V. CONCLUSIONS AND FUTURE WORKS

This paper proposes a novel method for processing data
from gene expression data for the prediction of missing or
non-measured differential expressed proteins. The method
has been validated through the 2D-Gel response of a cell
line under LDL exposure. The method has been able predict
over one third of the missing proteins that were differ-
entially expressed in validation set and showed stability
on the predicted differentially expressed set. This figures
show a preliminary validation of the method. Future work
will compare systematically this approach against similar
methodologies found on some commercial packages like
IPA.
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