
  

  

Abstract—A long-term goal of biomedical research is to 
decipher how genetic processes influence disease formation. 
Ubiquitous and advancing microarray technology can measure 
millions of DNA structural variants (single-nucleotide 
polymorphisms, or SNPs) and thousands of gene transcripts 
(RNA expression microarrays) in cells. Both of these 
information modalities can be brought to bear on disease 
etiology. This paper develops a Bayesian network-based 
approach to integrate SNP and expression microarray data. 
The network models SNP-gene interactions using a phenotype-
centric network. Inferring the network consists of two steps: 
variable selection and network learning. The learned network 
illustrates how functionally dependent SNPs and genes 
influence each other, and also serves as a predictor of the 
phenotype. The application of the proposed method to a 
pediatric acute lymphoblastic leukemia dataset demonstrates 
the feasibility of our approach and its impact on biological 
investigation and clinical practice. 

I. INTRODUCTION 
ODERN microarray technologies have revolutionized 
biomedical investigations through the parallel 

assessment of structural or functional information of 
hundreds of thousands of biomolecules on a single chip. 
Various types of microarrays have been invented to study 
genomics from different aspects. Single-nucleotide 
polymorphism (SNP) microarrays interrogate DNA at a 
specific nucleotide, allowing genome-wide association 
studies to identify SNPs associated with disease formation in 
a hypothesis-free manner [1]. Gene expression chips record 
RNA transcripts from DNA, allowing differential expression 
analysis [2-3] to identify genes active or repressed in disease 
processes. While the techniques of analyzing each individual 
type of data have been well established, much work remains 
to usefully aggregate SNP and gene expression data to 
explain how genetic mutations and aberrant transcription 
result in disease formation.  

Integrative analysis of SNP and gene expression 
microarrays has gained substantial attention in the past few 
years. Several novel statistical methods were developed to 
identify genetic variants associated with gene expression 
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traits (called expression quantitative trait loci, or eQTLs) [4-
6]. However, the identification of eQTLs does not reveal 
their functional association with disease formation, which 
has lead to difficulty translating eQTL findings to clinical 
practice. Furthermore, eQTL analysis only accounts for 
SNP-gene interactions, and is unable to explain SNP-SNP 
and gene-gene interactions.  

This paper proposes the following strategies to perform 
integrative analysis of SNP and gene expression data:  

1. To capture three types of molecular interactions (i.e., 
SNP-SNP, SNP-gene, and gene-gene interactions), we 
conduct a network analysis of the data. 

2. To relate the eQTL findings to disease states, we treat 
the disease phenotype as a variable and measure 
association between it and the SNPs and genes. 

3. To infer the influence of SNPs and genes on disease 
formation, we include the phenotype variable in the 
network analysis and model phenotype-SNP and 
phenotype-gene interactions along with the three types 
of molecular interactions.  

4. To facilitate the clinical usefulness of our network 
analysis, the resultant network is also an accurate 
predictor/classifier of phenotypes. 

Microarray data are usually noisy and experimental 
samples always present biological variability, thus we model 
the data by random variables. A SNP takes one of three 
possible genotypic states (i.e., homozygous major, 
homozygous minor, or heterozygous), which are described 
by a multinomial variable. A gene expression level is a 
continuous measurement of the abundance of the gene 
transcript in the cell, which is described by a log-normal 
variable. From the many approaches to biological network 
analysis [7], we choose a Bayesian network (BN) 
framework, due to the ease of handling random variables 
and making predictions based on the inferred networks. 
However, most existing BN methods for microarray analysis 
consider a single type of variable only [8-10]. When 
encountering mixed types of data, these BN methods 
quantize expression levels to simplify the analysis, but 
unfortunately lose much information during quantization. To 
avoid problems arising from quantization, this paper 
describes the application of a new BN method to process 
both discrete and continuous variables, resulting in an able 
tool for SNP-expression analysis. We then demonstrate how 
our approach can study transcription mechanisms in 
pediatric acute lymphoblastic leukemia (ALL).  
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II. METHOD DEVELOPMENT 

A. Phenotype-Centric Network 
A Bayesian network is a directed graph, where a node 

represents a variable and a directed arc linking a pair of 
nodes records the probability of the child (target) node 
conditional on the parent (source) node. Figure 1 illustrates 
an example BN.  

 
Fig. 1.  An example BN. Circle and square nodes denote continuous and 

discrete variables, respectively. 
 
Our ultimate goal is to find genes and SNPs associated 

with disease phenotypes. Therefore, we model the SNP-gene 
network as a phenotype-centric network. With reference to 
Figure 1, the phenotype is a root node of the network, and all 
nodes are directly or indirectly linked to the phenotype. This 
structure allows us to predict the value of the phenotype 
given values for the other SNPs and genes in the network. 
Furthermore, we can find eQTLs from this network: SNP1 
influences expression levels of Gene2, SNP2 of Gene1, and 
SNP3 of Gene3. Besides eQTL findings, we can explain 
other SNP-gene relations: The expression of Gene1 is 
simultaneously modulated by SNP2 and Gene2, implying 
Gene1 and Gene2 have some functional relationship; the 
genotype of SNP2 is dependent on SNP3, usually an 
indicator of linkage disequilibrium in the genome. 

Given an integrative genomic database, our task is to infer 
the directed links between variables. However, modern 
microarray datasets contain more than 500,000 SNPs and 
more than 50,000 genes, so it is computationally infeasible 
to learn the network directly from the whole data set. To 
overcome this difficulty, we design a learning algorithm in 
the following steps.  

B. Step 1: Variable Selection 
Let sX  and gY  be multinomial and Gaussian random 

variables representing the SNP genotypes and gene 
expression levels, respectively. The phenotypes are 
described by a multinomial random variable C  indicating 
disease states. We use uppercase to denote random variables 
and lowercase to denote their values. 

The genes and SNPs statistically dependent on the 
phenotype are filtered in the first step. The filtering can be 
accomplished by computing Bayes factors (BF), as follows:  
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and similarly for gY  with threshold Yτ . For each gene or 

SNP, the Bayes factor evaluates the ratio of its likelihood of 
being dependent on the phenotype to its likelihood of being 
independent of the phenotype. Equivalently, we also can 
consider log Bayes factors LBF for variable selection. For 
thresholds τ  greater than or equal to 1, the BF indicates that 
the gene or SNP is statistically associated with the 
phenotype, however in practice other values of τ can be 
chosen, generally for computational reasons. 

C. Step 2: Network Learning 
Without loss of generality, we assume that S  SNPs and 

G  genes were selected by the preceding step, and the 
microarray data under consideration turns out to be 

},...,,,...,,{ 11 GS yyxxcD = . The task now is to search for a 
network topology that connects each variable to the parent 
variable(s) with strongest modulation of its values, where the 
best set of parents is determined by likelihood computation. 
More formally, our objective is to choose from a set of 
candidate network models },...,{ 1 KMM=Ω  the optimal 

network M̂  that best explains the data D . Equivalently, we 
look for the highest posterior probability )|( DMp K . 
Applying Bayes’ theorem to )|( DMp K  results in 

)()()( kkk MDpMpDMp ∝ , where )( KMp  is the prior 

probability of model KM  and )|( KMDp  is the marginal 
likelihood. The computation of )|( KMDp  is accomplished 
by averaging out parameters, denoted by a vector Kθ , from 
the likelihood function ),|( KKMDp θ . The vector Kθ  
contains the values of the random vector KΘ  parameterizing 
the distribution of GS YYXXC ,...,,,...,, 11  conditional on KM . 
We can exploit the local Markov properties encoded by the 
network KM  to rewrite the joint probability ),|( KKMDp θ  
as 
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where )(zpa  denotes the values of the parents )(ZPa  of 
random variables Z , and kzθ  is the subset of parameters 

used to describe the dependence of variable Z  on its 
parents. 

As a general rule, information flows from DNA to RNA; 
accordingly we allow genes in the network to have as 
parents SNPs, the phenotype, other genes, or any 
combination. In contrast, we allow SNPs to only have other 
SNPs or the phenotype, or their combination, as parents. We 
further assume the J  samples in the database are 
independent. The likelihood function becomes 
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where the subscript j  indicates the j -th sample. The first 
term can be estimated by sample frequencies, and the second 
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term can be derived using a linear Gaussian model [10]. The 
marginal likelihood function is the solution of the integral 

kkkkk dpMDpMDp θθθ )(),()( ∫= . 

Due to limited space, in this paper we do not present the 
detailed computations, which can be derived from [10]. 
Finally, the best Bayesian network model is determined by 
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D. Phenotype Prediction 
Once the network is learned, we can use it to predict the 

phenotypes. The SNPs and genes used to predict the 
phenotype variable C  are those in the Markov blanket of C . 
The Markov blanket of a node consists of the node’s parents, 
its children, and its children’s other parents (Figure 1). To 
predict the phenotype of a patient, we substitute the values 
of each variable in the Markov blanket from the patient’s 
data into the network model, and then use a local 
propagation algorithm [11] to compute the most probable 
phenotype value.  

III. EXPERIMENTS 
Acute lymphoblastic leukemia (ALL) is primarily 

considered a childhood cancer, although it can occur in 
individuals of any age. Due to different responses to 
chemotherapy, ALL can be classified into different subtypes, 
two of which are B-cell precursor ALL (BCP-ALL) and 
common ALL (C-ALL). Although physicians can follow the 
guidelines provided by the World Health Organization to 
distinguish BCP-ALL from C-ALL by lymphocyte analysis, 
the genetic and transcriptional difference between these two 
subtypes is still obscure [12]. Using our proposed network 
analysis, we demonstrate what SNPs and genes lead to the 
distinct ALL subclasses.  

We used pediatric ALL data from the Gene Expression 
Omnibus GSE10792 [12]. In this data, 28 patients were 
genotyped at 100,000 SNPs using Affymetrix Human 
Mapping 100K Set microarrays, and the expression patterns 
of 50,000 genes were profiled using Affymetrix HG-U133 
Plus 2.0 platforms. Eight of the patients were BCP-ALL 
while the rest were C-ALL. In the variable selection step of 
our analysis, by selecting genes with log Bayes factors > 0 
and SNPs with log Bayes factors > 5, we obtained 14 genes 
and 109 SNPs for network analysis. In the network learning 
step, we restrict the maximum number of parents of each 
node to be 3, and implement the learning by the step-wise 
K2 algorithm [10].  

Figure 2 shows the network inferred from our analysis. 
The ALL subclasses dependency network consists of 13 
transcript probes and 13 SNP probes. Enrichment study 
shows that the 13 transcript probes are mapped to 9 genes, 
listed in Table 1. We validated the network by predicting the 
phenotypes. The ALL network achieves 100% predictive 
accuracy for classifying BCP-ALL and C-ALL. To test the 
robustness of this network model, we performed leave-one-
out cross validation, which reaches 96.5% accuracy. 

 
Fig. 2.  The SNP-gene network of ALL subclasses 
 

Table. 1.  The signature SNPs and genes for ALL subclasses prediction. 
Nameless SNPs and genes are shown their probe IDs in brackets. 

SNP/Gene Symbol Chromosome 
Location 

Function 

MAP1B 5q13 Cell signaling, Cell 
morphology, Cellular 
assembly 

C8orf84 8q21.11 Cancer, Genetic disorder 
SEMA6D 15q21.1 Cellular movement, 
ID4 6p22-p21 Cellular growth 
CDH2 18q11.2 Cell morphology, Cellular 

assembly, Cellular 
movement 

CHRNA1 2q24-q32 Cell morphology 
MYO3A 10p11.1 Genetic disorder 
NID2 14q21-q22 Cell signaling 
[235743_at] n/a  
rs2828503 21q21.2  
rs713112 21q22.2  
rs10483569 14q21.3  
rs1036756 1p35.1  
rs225710 6q24.1  
rs2502248 6q12  
rs1530207 3q26.1  
rs1371901 3q26.1  
rs638557 3q26.1  
rs7727540 5p15.31  
rs1147962 10q11.21  
rs6577710 8q24.23  
[SNP_A1650431] n/a  

 
We now illustrate how to use the result to perform eQTL 
identification. In Figure 2, for instance, the SNP rs2502248 
is a parent of genes CHRNA1, implying that rs2502248 is an 
eQTL of CHRNA1. Moreover, the network can identify 
genes jointly regulated by eQTLs and other genes. For 
example, the expression of CHRNA1 is co-regulated by SNP 
rs2502248 and genes C8orf84 and ID4; this finding is 
uniquely discovered by our network analysis that takes into 
account SNP-gene interactions in the interpretation of 
microarray data. Comparing Table 1 and Figure 2, we 
observe that genes and their eQTLs are located in different 
chromosomes. This observation suggests that there is a 
transcription mechanism across chromosomes, and that a 
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more detailed study to investigate the biology is warranted.  
We further performed a functional study on the network 

using Ingenuity Pathway Analysis (www.ingenuity.com). 
The known biological functions of the SNPs and genes are 
listed in Table 1. The genes SEMA6D, CHRNA1, CDH2, 
ID4, MYO3A and C8orf84 are involved in cellular 
movement and genetic disorders, and their relationship to 
leukemia have previously been reported [13-14]. Although 
MAP1B, NID2 have not yet been associated with leukemia, 
they participate in the cell signaling pathways; this finding 
implies that alterations in cell signaling is a mechanism 
characterizing the difference between BCP-ALL and C-
ALL. 

In the ALL network, the Markov blanket of the phenotype 
consists of 11 SNPs and 1 transcript, which are the only 
variables needed to predict ALL subclasses. To demonstrate 
that the transcript-SNP combination assembles the optimal 
signature, we examine the prediction accuracy of individual 
signatures. The results are summarized in Table 2. The table 
shows that none of the signature SNPs or transcript reaches 
100% accuracy alone. Except rs2828503 which achieves 
95% accuracy, all other signatures achieve no more than 
88.1% accuracy. Rs2828503 is a SNP located on 
chromosome 21, far from known genes, but it is identified as 
an eQTL for the ID4 gene in our network, indicating a 
possible regulatory role in cell growth. Although the 
combination of SNPs seen in Figure 2 achieves better 
classification of BCP-ALL and C-ALL, the single SNP 
rs2828503 has remarkable performance. 

IV. CONCLUSIONS 
A long-term goal of biomedical research is to decipher 

how genetic processes influence disease formation. With the 
advent of microarray technologies, we can genotype 
hundreds of thousands of SNPs and assess expression of tens 
of thousands of genes. The large amount of data causes 
difficulty in integrating two types of genomic data. This 
paper develops a Bayesian network-based method to 
integrate SNP and gene expression microarrays. The 
proposed network model describes the data as a phenotype-
centric network. The algorithm consists of variable selection 
and network learning. We used a pediatric ALL data to 
demonstrate the feasibility of the approach. The ALL study 
illustrates how to conduct eQTL investigation and predict 
phenotypes using the inferred network. Extending our 
approach to other datasets can lead to advances in 
biomedical study and clinical practice.  

 
Table. 2.  The prediction accuracy of individual signature SNPs/genes. 

SNP/Gene 
Symbol Prediction Accuracy 

C8orf84 58.1% 
rs2828503 95.6% 
rs713112 76.2% 
rs10483569 87.5% 
[SNP_A1650431] 78.7% 
rs225710 85.6% 

rs2502248 80.0% 
rs1530207 88.1% 
rs638557 88.1% 
rs7727540 81.9% 
rs1147962 85.6% 
rs6577710 85.6% 
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