
 

 

 

Abstract — Computational prediction of cis-regulatory 
elements for a set of co-expressed genes based on sequence 
analysis provides an overwhelming volume of potential 
transcription factor binding sites. It presents a challenge to 
prioritize transcription factors for regulatory functional 
studies.  A novel approach based on the use of Lasso regression 
models is proposed to address this problem. We examine the 
ability of the Lasso model using time-course microarray data 
obtained from a comprehensive study of gene expression 
profiles in skin and mucosal wounds in mouse over all stages of 
wound healing. 

I. INTRODUCTION 

IME-COURSE transcriptome studies of biological 
processes have provided valuable insights into the 
dynamic regulatory mechanisms of these processes [1-

3]. The analysis of temporal profiles of gene expression 
reveals that genes can be divided into groups with distinct 
co-expression patterns over a time period. The identification 
of specific transcription factors (TFs) that regulate a specific 
set of co-expressed genes is an important step towards the 
understanding of underlying biological mechanisms. 
Numerous computational methods have been developed for 
the prediction of over-represented transcription factor 
binding sites (TFBSs) in the promoter regions of a set of 
genes [4-6].  However, the information obtained about the 
total number of the predicted TFBSs, their locations, binding 
scores and statistical significance can be overwhelming. This 
presents challenges when trying to accurately determine the 
set of potential TFs for a regulatory functional study in a 
biological investigation. 

We propose a novel approach based on the use of Lasso 
regression models to address the issue of selecting the most 
likely related TFBSs for multiple sets of co-expressed genes 
obtained from a typical analysis of time-course microarray 
data. The lasso regression models [7][8] are very well suited 
as selection and shrinkage estimation methods for 
classification problems using microarray gene expression 
data. As it is widely known, in these data the number of 
genes is much larger than the number of arrays involved in 
the experiment [9].  

For our proposed lasso models, we utilize a unique set of 
features that describe a TFBSs’ binding strength, its location 
on the promoter region and its statistical enrichment p-value, 
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all of which were obtained from promoter analysis tools. 
Additionally, we consider extra features representing the 
joint contribution of two TFBSs. Herein, we use the term 
“cluster” to represent a set of co-expressed genes that were 
obtained from clustering analysis of mRNA expression 
profiling data under certain condition.  Our models take 
multiple clusters of genes and attempt to produce a set of 
individual TFBSs, in addition to pairs of TFBSs, for each 
cluster simultaneously.  These TFBSs are considered 
regulators of the gene expression in each cluster. We 
examine the ability to discern the representative TFs for each 
cluster in the proposed model using time-course data from a 
comprehensive study of gene expression profiles in skin and 
mucosal wounds in mouse over all stages of wound healing 
[3]. We demonstrate the potential utility of this approach in 
identifying the regulation strength of individual TFs and the 
joint effect of two TFs. 

II. METHODS 

We assume that a set of genes, with a similar gene 
expression profile across several time points, are regulated 
by a common set of TFs. By analyzing the promoter regions 
of these genes, a set of over-represented TFBSs can be 
obtained. We use the lasso penalized logistic regression 
model to select a set of TFBSs that are mostly associated to 
a set of co-expressed genes. This model allows the selection 
of a set of TFBSs for each individual cluster when multiple 
clusters are involved.   The goal of our model is not only to 
identify individual TFBSs that regulate a set of genes, but 
also to detect pairs of TFBSs that concurrently affect the 
expression of those same genes. 

A. Lasso-penalized multinomial logistic regression 

The lasso regression is a penalized regression model that 
uses ℓ1 penalty to achieve a sparse solution, especially for 
problems where the number of predictors  far exceeds the 
number of observations n [7][8]. Suppose a dataset consists 
of a set of n points ܺ in ܴ, each with a response ݕ א ܴ. 
Let ߠ ൌ ሺߚ, ሻߚ א ܴାଵ. The lasso linear regression is 
defined as a minimization problem with the following 
objective function: 

݂ሺߠሻ ൌ ∑ ሺݕ െ ߚ െ ܺ
ሻଶߚ்  λ ∑ หβ୨ห

୮
୨ୀଵ


ୀଵ , 

where ߣ is a penalty parameter. With the proper choice of 
value for this parameter in the regression model, the over-
fitting can be avoided and the prediction is more reliable. 
The lasso model has been extended to a logistic regression in 
which we maximize the following objective function:  
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݂ሺߠሻ ൌ ݈ሺߠሻ െ ߣ ∑ ߚ|

ୀଵ |, 

where ݈ሺߠሻ is the logistic log likelihood function. This 
model can be further generalized to a multinomial logistic 
regression when the categorical response variable has more 
than two levels [8].  

We utilize the multinomial lasso logistic regression to 
identify groups of TFBSs, each of which is unique to a 
cluster of genes. The dataset in consideration consists of 
clusters of genes that were obtained from a genome-wide 
transcriptome study. We hope to simultaneously identify the 
TFBSs that act on the individual clusters.  

The recently released database cREMaG (cis-Regulatory 
Elements in the Mammalian Genome) [6], is designed for in 
silico studies of the promoter properties of co-expressed 
mammalian genes. This tool can identify over-represented 
TFBSs in the promoter regions of a set of specific co-
expressed genes. For each of our genes’ clusters, we 
obtained information about the most over-represented 
binding sites of TFs predicted by cREMaG. We utilize 3 
data fields to build variables for our regression models: a) 
The similarity score of a TFBS based on a Position Weight 
Matrix (PWM) [10-12] of the TF; b) The position of a TFBS 
on the promoter; c) The TF’s fold p-value, which is a 
statistical significance measure of the TF fold enrichment in 
the input gene set against a random fold distribution. For 
details please refer to [6]. 

B. Preparation of model variables  

Two types of independent variables are considered in our 
lasso models. The type I variables relate to individual 
TFBSs. The type II variables relate to the joint effect of two 
TFBSs in the regulation of genes. We also incorporate the 
information of the distance between a TFBS and the 
transcription start site (TSS) of a gene. To reduce the 
number of variables, we divide a promoter sequence into 
several regions depending on the distance to the TSS. Each 
region is represented by a bin.  

Here we define the type I variable βjk associated to the 
vector ܺ א ܴே. Each element of Xjk is a binding score xijk  
(i=1...N;  j=1...J; k=1...K) for gene i, TF j, and bin k. 

xijk represents the strength of the TFBSs of TF j identified 
in bin k in the promoter region of gene i. Therefore, if TF j 
has no TFBSs identified in bin k, then xijk is set to 0. On the 
other hand, if TF j has one or more TFBSs identified in bin 
k, then the value of xijk is calculated based on the output from 
cREMaG as follows. We first compute average similarity 
scores ݏҧijk for all identified TFBSs of TF j in bin k, then we 
multiply ݏҧijk by the negative logarithm of the fold p-value of 
TF j in the current cluster.  The obtained value is then 
assigned to xijk.  

 

ݔ ൌ ൞

െݏҧ · ln  , if bin ݇ includes one ore more TFBSs  
                                   of TF ݆ in the promoter of gene ݅               

0, Otherwise

  

where:  
݅ ൌ 1. . . ܰ,          ܰ is the total number of genes 

݆ ൌ 1. . .   is the total number of TFs ܬ            ,ܬ
݇ ൌ 1. . .  is the total number of position ܭ         ,ܭ

             bins in the promoter  
We also considered different weights for ݏҧijk based on a 

threshold p0 for the fold p-value in each score xijk:  

ݔ ൌ

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ

ҧݏ · ሺln ሻଶ ,
if  

1
݁

 ݎ  , and bin ݇ includes

one or more TFBSs of TF ݆ in the
promoter of gene ݅

 

ҧݏ · ටെln  ,
if  ൏  ൏

1
݁

 , and bin ݇ includes        

one or more TFBSs of TF ݆  
in the promoter of gene ݅ 

 

    0,   Otherwise                                  

 

In summary, Xjk is defined as: 

ܺ ൌ ሾݔଵ, ,ଶݔ … ,  ேሿ்ݔ
In our model, the type II variables have the same format 

as type I variables and they represent the joint effect of two 
TFs. As before, a type II variable ߚమమ

 will be associated to a 
vector ܺమమ

 defined as: 

ܺమమ
ൌ ට ܺభ

ᇲభ
ᇲ · ܺభ

ᇲᇲభ
ᇲᇲ  

where ݆ଵ
ᇱ , ݆ଵ

ᇱᇱ are indices for two TFs; ݇ଵ
ᇱ , ݇ଵ

ᇱᇱ are bin 
indices for two locations on the promoter. j2 and k2 are TF-
pair and bin-pair indices, respectively. 

The dependent variable in our model, ܻ א ܴே, indicates 
the cluster to which each gene belongs. Each element yi can 
take a value between 1 and C where C is the total number of 
clusters (e.g., yi = m, if gene i belongs to cluster m).   

III. RESULTS 

We consider two lasso multinomial regression models in 
our study. The models will analyze multiple clusters of 
genes simultaneously to determine the TFs that are most 
heavily involved in each cluster of genes. The two models 
are provided as follows. 

Model 1 - only type I variables are included. A non-
zero variable obtained from the lasso model for one gene 
cluster is explained as the regulatory strength of the TF at 
the identified location on the promoter regions, within the 
gene cluster. 

Model 2 - both type I and type II variables are 
included. A non-zero type II variable is explained as the 
regulatory strength of two TFs at (possibly different) 
locations on the promoter regions, within the gene cluster.  

A. Dataset 

We selected a temporal microarray gene expression 
dataset from the published literature to demonstrate the 
utility of this approach. This dataset is the first systematic, 
comprehensive and dynamic study of gene expression 
profiles in skin and mucosal wounds in mouse over all 
stages of wound healing [3]. The significantly similar and 
differentially expressed genes in skin and mucosal wounds 
were successfully identified and grouped using well-
established mouse models and microarray technology. The 
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TABLE IV 
MINIMUM ERROR RATE WITH MAXIMUM NUMBER OF VARIABLES 

 
 

Skin Tongue 

  Min error rate Min error rate 

 
p No 

Dfmax 
Dfmax = 

100 
No 

Dfmax 
Dfmax = 

100 
Model 1 0.01 0.464 0.467 0.455 0.484 
Model 1 0.05 0.302 0.359 0.425 0.480 
Model 2 0.01 0.538 0.544 0.616 0.627 

Model 2 0.05 0.404 0.420 0.501 0.513 

TABLE III 
OPTIMAL λ AND MINIMUM ERROR RATE 

 
 

Skin Tongue 

Fold p threshold(p0) λ 
Min 
error 
rate 

λ 
Min 
error 
rate 

Model 1 0.01 0.018 0.464 0.018 0.455 
Model 1  0.05 0.009 0.302 0.014 0.425 
Model 2 0.01 0.037 0.538 0.067 0.616 
Model 2 0.05 0.027 0.404 0.078 0.501 

identification of 5 clusters of genes shows similar, but not 
identical, patterns of expression in wounds in skin and 
tongue. As described in [3], for both tissues, the 
differentially expressed genes are grouped into 5 clusters as: 
early down, early up high, early up low, early up medium 
and late up. The number of genes in each cluster is provided 
in Table I. For details of this gene expression analysis please 
refer to [3]. The critical step to develop an understanding of 
the transcription regulation related to the wound healing 
process is the discovery of the common transcription 
regulators for each cluster.  

 
We queried the cREMaG database using the genes in each 

cluster in skin and tongue respectively. The parameter 
settings of the queries are listed in Table II. 

 
The query results from the cREMaG database were 

reorganized into matrices to be the inputs for the lasso 
multinomial logistic regression. The position bin size was set 
to 2,000bps. Therefore, the promoter region upstream of the 
TSS was partitioned into 5 position bins covering a length of 
10,000bps. The promoter region downstream of the TSS was 
represented by 1 position bin of 1,000bps. We calculated the 
value for type I and type II variables as described before.  

B. Evaluation procedure  

We used the R package glmnet [9] to solve the 
multinomial lasso-penalized logistic regression models. 
Using its internal 5-fold cross-validation procedure we 
obtained, for each tissue, the optimal λ values of both 
models with the minimum cross-validated error rate. Non-
zero values for type I and type II variables for optimal λ and 
cross-validated error rate were retained in each individual 
gene cluster for further analysis. Table III summarizes the 
information on the optimal λ and the corresponding 
minimum cross-validated error rate for each model and 
tissue.  

To further control the number of variables in the final 

solution, we restricted the maximum number of variables 
(Dfmax) to be included in each model. From our experiment 
we observed that when the upper bound on the number of 
variables allowed for the model (Dfmax) is reduced to 100, 
there is no significant increase in the Min error rate (Table 
IV) compared to the models where there is no Dfmax 
restriction. Therefore, we provide our final results based on 
the models determined with Dfmax=100 in Table V. 

TFs corresponding to type I and type II variables are 
selected from the final lasso models using the following 
criteria:  for each of model 1 or model 2, we selected 
variables with values ≥ 0.001 and commonly found in both 
regression models of different p0. We can observe the 
consistency of common TFs selected in the same groups for 
the two tissues as well as unique TFs for different clusters 
and tissues. For instance, one of the TFs, NF-kappaB [13], 
which plays a key role in regulating the immune response to 
infection, is identified in both models in both tissues in the 
early up high group.   Lhx3 [14], which is a TF required for 
pituitary development and motor neuron specification, is 
only identified in skin. Several joint effects are also 
identified, including the effects between RELA and NF-
kappaB. Researchers have revealed that NF-kappaB will 
bind to RELA to form a complex which will be activated, 
then translocated into the nucleus and will later bind to DNA 
[15]. 

IV. CONCLUSION 

Studies have shown that cis-regulatory elements are 
bound by transcription factors, in a sequence-specific 
manner, to determine biological processes in cells and 
tissues. However, the overwhelming number of possible TFs 
obtained from sequence analysis presents a difficulty to 

TABLE II 
PARAMETER SETTINGS OF CREMAG DATABASE QUERY 

Parameter Selection 

Conservation threshold 70% 
Top percent of conserved region 100% 
Max number of most conserved TFBSs Top 100 
Coding/Non-coding sequence Non-coding
Length of upstream segment 
Length of downstream segment 
Random TFBS occurrence 
Precompiled background 

10,000bps 
1,000bps 

2TFBS/10,000bps 
Conserved promoter 

TABLE I 
NUMBER OF GENES IN EACH CLUSTER 

Cluster Skin Tongue 

Early down 236 47 
Early up high 54 18
Early up low 376 119 
Early up medium 158 72 
Late up 130 88 

The number of genes in each gene cluster in skin and tongue 
identified by wound healing study in Chen et al. [3].  
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TABLE V 
SOME IDENTIFIED EFFECTS IN DIFFERENT MODELS 

 cluster TF TF Class 

Skin 
Model 1 

Early down Lhx3 HOMEO 

Early up high 
RELA REL 
NF_kappaB REL 

Early up low 

CREB1 bZIP 
MZF1_5_13 ZN-FINGER 
ELK1 ETS 
ELK4 ETS 

Early up 
medium 

ELF5 ETS 
SPIB ETS 

Late up 
Evi1 ZN-FINGER 
Nobox HOMEO 

Skin 
Model 2 

Early down 
Lhx3 HOMEO 
*CREB1 bZIP 

Early up high 
RELA REL 
NF_kappaB REL 

Early up low ELK1 ETS 

Early up 
medium 

RELA  REL 
*RELA REL 
FOS bZIP 
*SPIB ETS 

Late up Evi1 ZN-FINGER 

Tongue 
Model 1 

Early down 

MZF_5-13 ZN_FINGER 
Pax4 PAIRED-HOMEO 

NR1H2-RXRA 
NUCLEAR 
RECEPTOR 

ELK1 ETS 

Early up high 
Cebpa bZIP 
NF_kappaB REL 

Early up low 
Foxq1 FORKHEAD 
IRF2 TRP-CLUSTER 

Early up 
medium 

IRF1 TRP-CLUSTER 
Foxd3 FORKHEAD 

Late up MEF2A MADS 

Tongue 
Model 2 

Early down Myb TRP_CLUSTER 
Early up high NF_kappaB REL 

Early up low 

Foxq1 FORKHEAD 
IRF2 TRP-CLUSTER 
Arnt-Ahr bHLH 
*ELK1 ETS 

Early up 
medium 

RELA REL 
*HLF bZIP 

Late up 
RELA REL 
*Arnt bHLH 

* This TF has joint effect with the TF in the previous row

determine the regulatory relationship between TFs and their 
target genes. Further, the identification of combinatorial 
patterns of two TFs is not trivial from the predicted results.  
In this work we proposed multinomial logistic regression 
models to learn a set of strongly associated individual 
TFBSs in addition to pairs of TFs and their joint effect in a 
set of co-expressed genes. 

Our models integrated the TFBSs’ binding similarity, the 
statistical measure of over-representation and the TFBSs’ 
positions. In this way, we were able to determine the 
importance of multiple TFBSs belonging to the same TF, the 
combination of two TFBSs of the same TF, or the 

combination of different TFs observed at different positions 
in promoter regions. The preliminary evaluation of the 
proposed lasso multinomial logistic regression based on the 
dataset of wound healing in skin and tongue demonstrated 

the potential ability of this method to identify functional cis-
regulatory elements. 

 To further expand our model, several possible directions 
can be explored. First, our model can be modified for further 
dissection of associated TFs in condition-specific regulatory 
networks. Second, in a multinomial lasso regression model 
we will normally incorporate one explanatory variable for 
each class. In our case, the algorithm will have a strong 
tendency to choose a vector Xjk for just one cluster. This may 
not be biologically significant because one TF may have 
similar binding patterns in different sets of genes. Further 
development of our mathematical model is required to 
capture this behavior. Third, in our model, independent 
variables represent the binding strength of different TFs in 
different promoter regions, which may not fully meet the 
orthogonal assumption in lasso regression. To address this 
issue, i.e. when strong correlations exist between the 
independent variables, additional modifications can be done 
to identify explanatory TFs in a group manner. This can be 
achieved through group lasso regression or other novel 
methods. 
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