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Abstract—Functional comparison and alignment of Protein 

Interaction Networks (PINs) will enable a better understanding 

of cellular organization and processes. Gene Ontology (GO) 

provides a structured standard vocabulary of functional terms 

of gene products, and has been used to measure the functional 

similarity between proteins. In this study, we propose an 

algorithm to measure the functional similarity between PINs 

based on GO. The algorithm simultaneously takes the PIN’s 

network topology and semantic similarity of the component 

proteins into account. We employ the algorithm to measure the 

similarity between pathways present in the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) database and cluster the 

pathways according to similarity. The results show great 

consistency with the function of these pathways. 

I. INTRODUCTION 

t is increasingly clear that most biological characteristics 

arise from complex interactions between cell’s numerous 

constituents [1]. Spurred on by advances in high-throughput 

experimental techniques (e.g., yeast two-hybrid [2], [3], 

co-immunoprecipitation [4]) and new computational 

approaches for protein-protein interaction prediction, data on 

molecular interactions are increasing exponentially. In 

systems biology, a group of protein-protein interactions are 

often modeled as complex networks. Analyzing and 

understanding protein interaction networks (PINs) have 

become a key challenge for biology and attract much interest 

in recent years.  

As most biological knowledge is derived from comparison 

and classification, measuring the functional similarity of PINs 

is a powerful method to address the challenge. Network 

comparison aims to contrast two or more interaction networks, 

which represent different species or different conditions. Just 

like sequence alignment has pushed our understanding of 

evolution, biology and disease forward greatly, network 

comparison and alignment will have a similar impact. 

However, and although sequence comparison has long been a 

staple of biological research, the development of a similar 

toolbox for comparing biological networks is still in its 

infancy [5]. 

The existing network comparison methods can mainly be 

classified into three types: network alignment, network 
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integration and network query [4]. All of these are based on 

sequence similarity. Singh et al. introduce an algorithm, 

IsoRank, for global alignment of multiple PPI networks to get 

conserved subgraphs [5]. It simultaneously uses sequence 

similarity and network data. Kelley et al. propose a strategy 

for aligning two PPI networks that combines interaction 

topology and protein sequence similarity to identify 

high-scoring common paths and complexes [6]. However, 

they are all focus on detecting subnetworks that are sequence 

conserved or topology conserved, according to compare two 

or more networks across species.  

Here, we propose a topology-aware algorithm based on GO 

to measure the functional similarity between different PINs 

within species, such as condition-responsive subnetworks or 

functional modules. The algorithm simultaneously takes the 

PIN networks topology and semantic similarity of the 

component proteins into account. We employ the algorithm to 

measure the similarity between pathways present in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database and 

cluster the pathways according to similarity. The results show 

great consistency with the function of these pathways. 

II. METHORD 

A. GO-based Functional Similarity Measures 

Gene Ontology provides a structured standard vocabulary 

of functional terms and allows for coherent annotation of 

gene products [7]. The GO ontologies are presented as 

directed acyclic graphs (DAG) in which the terms form nodes 

and the two kinds of semantic relations (‘is-a’ and ‘part-of’) 

form edges. And they are similar to hierarchies but differ in 

that a child, or more specialized, term can have many parents, 

or less specialized, terms. The GO is divided into three 

orthogonal ontologies, biological process (BP), molecular 

function (MF), and cellular component (CC). The cellular 

component terms characterize the location of gene products in 

the cell. The molecular function terms represent the 

molecular level activities of proteins. The biological process 

terms describe a series of events accomplished by one or 

more proteins. GO annotations capture the available 

functional information of a gene product and can be used as a 

basis for defining a measure of functional similarity between 

gene products.  

The existing GO based measures for the functional 

similarity mainly focused on the similarity of GO terms and 

genes, which were proposed to measure the semantic 
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similarity of GO terms on the basis of information content (IC) 

or structure information of the Ontological DAG. Most of 

these methods utilize IC to measure the semantic similarity of 

GO terms, which were originally developed for the WordNet 

in natural language processing. Resnik defines similarity 

between two terms as the IC of their most informative 

common ancestor (MICA) [8]. Lin et al. take the distance 

between the terms and their common ancestor into account, 

and propose new methods based on Resnik’s method [9]. As a 

method using structure information, Wang et al. proposed a 

method to encode a GO term’s semantics into a numeric value 

by aggregating the semantic contributions of their ancestor 

terms in the DAG [10]. 

Similarity measures for genes or gene products have also 

been developed on the basis of the above semantic similarity 

measures of GO terms. The most common methods of 

measuring gene product functional similarity have been 

pairwise approaches based on IC. Lord et al. were the first to 

propose employing GO annotations to measure semantic 

similarity of gene products [11]. They defined the semantic 

similarity between annotated proteins as the average 

similarity of all the GO terms which can be calculated on the 

basis of IC measure. Sevilla et al. used the maximum of the 

pairwise terms similarity instead [12]. Couto et al. [13] opted 

for a composite average in which only the best-matching term 

pairs are considered. Schlicher et al defined a new measure 

which combining Lin’s and Resnik’s similarity measures to 

calculate to similarity between GO terms, and employ the 

maximum combination strategy [14]. 

As is discussed above, there are various methods to 

measure the functional similarity between gene products. As 

there is no direct way to ascertain the true functional 

similarity between two gene products, there is no clear best 

measure for comparing terms or gene products. Several 

efforts have been made to evaluate these semantic similarity 

measures, and the results show that Resnik’s method 

performs better than other methods. Here, we employ 

Resnik’s measure         to calculate the semantic similarity 

of GO terms, and take the average similarity of the best-match 

terms as protein similarity. 

B. Topology-aware Similarity Measure 

Calculating the semantic similarity between the PPI 

networks relies on two aspects of information encoded in the 

nodes and edges, in other words the similarity between the 

sets of proteins contained in the networks and the topology 

message. 

The proteins are typically annotated with more than one 

GO term, and they may perform different functions in 

different environmental conditions. Methods predicting 

physical interactions between proteins and functional 

modules based on their similarity rely on direct observation 

that interacting proteins often function in the same biological 

process or locate closely in the cell, so two proteins acting in 

the same biological process or co-localization are more likely 

to interact with each other [15-17]. We assume that, firstly a 

protein prefers to choose self-similar proteins to be its 

neighbors, and secondly the neighbors will affect the function 

of the protein. Based on these two hypotheses, we introduce 

our topology-aware similarity measure. Our algorithm works 

in two stages: Firstly it calculates a functional similarity score 

for each possible match between nodes of the two networks. 

Then it revise the similarity score by taking the neighbors into 

consideration, and a new similarity score is derived. The two 

stages are done recursively. 

DEFINITION 1 (Network annotation). A powerful way 

of representing and analyzing the PINs is a graph   (   ) 
where   is the set of nodes and E is the set of edges. Each 

node corresponds to a protein and an edge indicates a direct 

physical interaction between the proteins. | | is the size of 

this set, and | | is the number of edges. Let    (     ) and 

   (     )  denote the PINs,  (     )  denotes the 

similarity matrix whose elements  (     ) are the similarity 

value between node       and node      . Various  

semantic similarity measures can be used in the calculation. 

Here we employ Resnik’s measure, and denote the 

corresponding similarity matrix as        (     ) 
DEFINITION 2 (Aggregate function). Given a matrix 

 (     ) , we define an aggregate function   ( (     )) 

maps the matrix  (     ) to a single value, which employs 

the maximum weighted bipartite graph matching algorithm to 

get a mapping between the nodes of    and   , and take the 

average of  (     )  over each mapping. The matching 

algorithm gives an optimal map of two sets    and   , which 

is presented as a set of node pairs as   whose elements 

(     ) means the matching between node    in    and  node 

   in    is preferable. So we define the aggregate function 

  ( (     ))  as follows. 

  ( (     ))  
 

| |
∑  (     )

(     )    

 

DEFINITION 3 (Topology-aware similarity). Let  ( ) 
denote the set of proteins interacting directly with   , and 

 ( (  )  (  ))  denotes the similarity matrix of the 

neighbors of    and    respectively.  We define the 

Topology-aware similarity    (     ) as follows. 

         (     )    
 

 
(       (     )

   (       ( (  )  (  )))) 

And the final network similarity is defined as follows. 

 (     )    (  
 (     )). 

III. RESULT 

 

KEGG (Kyoto Encyclopedia of Genes and Genomes)[18] 

is a bioinformatics resource for understanding higher-order 

functional meanings and utilities of the cell or the organism 

from its genome information. The data at 

http://www.genome.ad.jp/kegg/ integrates current knowledge 

on molecular interaction networks such as pathways and 

complexes (PATHWAY database), information about genes 
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and proteins generated by genome projects 

(GENES/SSDB/KO databases) and reactions 

(COMPOUND/GLYCAN/REACTION databases). These 

three types of database actually represent three graph objects, 

called the protein network, the gene universe and the 

chemical universe. The protein network, which is the most 

unique data object in KEGG, is stored as a collection of 

pathway maps in the PATHWAY database, representing 

wiring diagrams of proteins and other gene products 

responsible for various cellular functions [19]. And in this 

paper, we employ the human-related pathway data in KEGG 

pathway data. The KEGG pathway maps are hierarchically 

classified reflecting the map resolution and functional 

modules at different levels. We can employ the hierarchically 

classified maps as the artificial classification sample set to 

assess the method measuring the similarity of PPI networks.  

GO-based semantic similarity can be used to compare gene 

products from the three aspects: BP, MF and CC. We employ 

BP to compute the similarity of the PPI networks, and take 

cellular processes related pathways in KEGG as test data set 

to assess the method measuring the similarity between PPI 

networks. 

 

 
There are 17 cellular process related pathways which 

contain four subcategories: Transport and Catabolism, Cell 

Motility, Cell Growth and Death and Cell Communication, 

and 8 of which are human related. There are 86 to 1869 

interactions, 75 to 206 proteins, 95% of which have GO 

annotations in each pathway, as show in table. We convert 

these pathways to PINs, and employ our algorithm to 

calculate the similarity between them. The results are shown 

in Table 1. The similarity between cell cycle and p53 

signaling pathway is the maximum score 0.617, and the 

similarity between cell cycle and tight junction is the 

minimum score 0.237. There are 7 pairs of pathways are high 

similar (similarity score >0.5). The average similarity (except 

the diagonal ones) is 0.437, which is high relatively because 

these pathways are all belong to human cellular process. 

We cluster the human cellular related pathways based on 

the similarity matrix shown in Table 1. The hierarchical 

cluster analysis dendrogram is draw to examine the ability of 

our algorithm to distinguish different pathways. We use 

   (     ) as dissimilarity matrix, and employ the furthest 

distance method. The result is show as Fig. 1. According to 

this clustering result base on network similarity, The cellular 

processes related pathways can be divided into three groups: 

1) p53 pathway Cell cycle pathway and; 2) Adherens 

junctions channels, Tight junction channels and Gap junction 

channels; 3) Actin cytoskeleton regulatory pathways, Focal 

adhesion pathway and Apoptosis pathways. This division 

indicates that the Topology-aware similarity measure makes a 

good distinction between these pathways. 

IV. CONCLUSION 

In the complex network research area, such as the Internet 

networks, social networks, the network similarity measure 

has been widely applied, and in the field of biological 

research, functional similarity measure of protein interaction 

network is still in the preliminary stage. Our topology-aware 

similarity measure, which integrates the topology information 

of PINs, gives a more reasonable measure of functionality 

similarity of protein interaction network. Further clustering 

analysis on KEGG pathways shows that our similarity 

measure can effectively distinguish similar functional 

pathways and give a quite reasonable clustering result. 
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