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Abstract—A novel mathematical model based on multi-way
data construction and analysis with the goal of simultaneously
separating and localizing the brain sources specially the sub-
components of event related potentials (ERPs) is introduced. We
represent multi-channel EEG data using a third-order tensor
with modes: space (channels), time samples, and number of
segments. Then, a multi-way technique, in particular, gener-
alized version of PARAFAC2 method, is developed to blindly
separate and localize mutually/temporally correlated P3a and
P3b sources as subcomponents of P300 signal. In this paper
the non-orthogonality of the ERP subcomponents is defined
within the tensor model. In order to obtain essentially unique
estimation of the signal components one parametric and one
structural constraint are defined and imposed. The method is
applied to both simulated and real data and has been shown to
perform very well even in low signal to noise ratio situations.
In addition, the method is compared with spatial principal
component analysis (sPCA) and its superiority is demonstrated
by using simulated signals.

I. INTRODUCTION

Event related potentials (ERPs) occur as the response of the brain
to any audio, visual, or somatosensory stimulus. P300 is a positive
ERP which occurs with a latency of about 300 ms after rare or task
relevant stimuli and may be further decomposed into the temporally
and mutually correlated P3a and P3b subcomponents that overlap
over the scalp. P3b is mainly distributed over the centroparietal
region and is mostly generated by posterior temporal, parietal,
and posterior cingulate mechanisms. P3b has a more centroparietal
distribution and corresponds to the classical P300 recorded within
an oddball paradigm after rare and task relevant events. P3a occurs
after novel events independently of task relevance and is charac-
terized by a more frontal distribution, a shorter latency, and fast
habituation. P300 and its subcomponents have significant diagnostic
and prognostic potential especially when its evaluation is combined
with other clinical assessment methods [1]. So, it is necessary to
develop efficient and robust methods for separation and localization
of P300 and also its subcomponents. Blind source separation (BSS)
has been proposed for this purpose by a number researchers such
as in [2]. There are some well established principle component
analysis (PCA) based methods aiming at separation of the correlated
sources. These methods are divided into two categories, temporal-
PCA which is designed for estimation of temporally uncorrelated
signals and spatial-PCA for spatially uncorrelated signals such as in
[3]. On the other hand, tensor factorization has been used to tackle
the BSS of brain sources for the past two decades [4]. Recently,
a tensor factorization based method is developed to separate the
brain sources in time domain [5]. This method employs parallel
factor analysis (PARAFAC) extension called PARAFAC2 [6] tensor
model for the temporally segmented mixture signals. Later, a similar
concept has been used to separate the brain sources in time-
frequency domain [7]. This paper is an improved version of previous
work in [5] for separating correlated P3a and P3b. The remainder
of the paper is structured as follows. In Section II our model and
its problem formulation is described. In Section III estimation of
model parameters is provided. In Section IV the results of applying
the method to simulated and real data are provided. Finally Section
V concludes the paper.

II. MODEL AND PROBLEM FORMULATION

Consider the following instantaneous mixing system:

X = SA
T + V (1)

where X ∈ R
N×Nx , S ∈ R

N×Ns , and V ∈ R
N×Nx denote

respectively the matrices of observed signals, source signals, and

noise. A∈R
Nx×Ns is the mixing matrix and Ns and Nx are

respectively the number of sources and sensors. Recovering the
sources from the acquired mixtures has been investigated by
incorporating different assumptions about the sources or mixing
systems. Here, it is assumed that the system is overdetermined,
i.e., Nx ≥ Ns. In recent years a number of solutions to BSS
problem have been proposed. In these approaches some properties
of the sources such as, statistical independence, uncorrelatedness,
disjointedness, sparsity, or non-Gaussianity are taken into account.
These methods fail when the sources are mutually overlapped or
correlated. So, a new method must be developed to solve the blind
separation of overlapped sources (BSOS). Tensor factorization is a
powerful method which has been used for blind source separation of
orthogonal source signals [5]. The main contribution of this paper is
therefore incorporating correlatedness of the sources into the tensor
model. Similar to the method proposed in [5], in this work a simple
temporal segmentation procedure has been used to produce the data
tensor by dividing the signals X and consequently S to K segments
called respectively as Xk and Sk with/without overlap and with
segment size of NK . Having overlapped Sks is an important
criterion which must be considered. So, considering correlatedness
of the sources for each segment, the original PARAFAC2 model is
changed to:

Xk = SkA
T + Vk

ST
k Sk = RkD

2
k; ∀ k = 1, . . . , K

(2)

where Xk ∈ R
Nk×Nx and Sk ∈ R

Nk×Ns are mixture and source
signals, Rk is the correlation matrix, and finally D2

k is a positive
diagonal matrix which shows the power of each source signal for
each segment k. Note that, for orthogonal or independent sources
Rk is very close to identity matrix. For simplicity, we ignore the
noise term Vk. Also, based on above formulation, we can factorize
each Sk into an orthonormal matrix Pk, a similarity matrix Hk,
and a diagonal matrix Dk, which absorbs the norm of different
sources at each segment k. So, based on the above decomposition,
the model in (2) can be rewritten as:

Xk = PkHkDkA
T

PT
k Pk = INs

;Rk = HT
k Hk; ∀ k = 1, . . . , K

(3)

where INs
∈ R

Ns×Ns is an identity matrix. Actually the above
formulation tries to model the data tensor which includes all
Xks. The proposed model can be considered as generalization of
the traditional PARAFAC2 tensor model for each Xk as Xk =
PkHDkA

T , where H is a fixed matrix for all segments. Recently,
PARAFAC2 has been used to separate the normal brain rhythms in
time domain [5] and time-frequency domains [7]. Compared to the
PARAFAC2 model, having different Hks rather than a fixed H for
all ks gives more flexibility to the proposed model. It is concluded
that this model may not provide unique decomposition of every
segmented mixture Xk. However, by considering different con-
straints for the parameter of this model, i.e., all Pks are supposed
to be orthonormal, all Dks are supposed to be diagonal matrices,
and all Rk are supposed to be correlation matrices, it practically
leads to unique estimations. Moreover, in some applications other
constraints such as orthogonality (orthogonality of columns of
A) or non-negativity can be considered for the mixing system.
Having unique estimations for the parameters of the proposed model
solves the localization problem by estimating A. It also solves the
BSOS problem using the information about all Dks, Hks, and
Pks to reconstruct the segmented sources as Sk. The next section
introduces the process for estimating all the parameters of the above
tensor model.

III. ESTIMATION OF THE MODEL PARAMETERS

Recalling the main formulation for each segment Xk =
PkDkA

T the overall minimization problem can be defined as:
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J =

K∑

k=1

||Xk − PkHkDkA
T ||2F (4)

where ||.||F stands for Frobenius norm of a matrix. In order to fit
the model of mixtures, alternating least squares (ALS) minimization
is developed for estimation of the two set of parameters separately.
The following procedures are used to estimate Pks, A, Hks, and
Dks.
Estimation of Pk: Let’s assume that A, Hks, and Dks are

known for all k and estimation of all orthonormal Pks is required.
The cost function for each k can be introduced as:

JPk
=tr(XT

k Xk)+

tr(A(DkRkDk)AT ) − tr(2ADkH
T
k P

T
k Xk)

(5)

which has to be minimized. Obviously, the first two terms of the
above cost function are independent of Pk and positive semi-
definite (PSD) matrices (their trace values are nonnegative). So,
the above minimization problem can be converted to maximization
of tr(PkHkDkA

T XT
k ). In order to achieve this, we define a new

variable Zk and its singular value decomposition (SVD) as:

Zk = HkDkA
T
X

T
k = UkΣkV

T
k (6)

where Σk is a diagonal matrix with nonnegative diagonal elements
and two orthonormal Uk and Vk matrices. Then, it can be proved
that one of the best estimations of Pk can be obtained as:

Pk = VkU
T
k (7)

Estimation of A, Hks, and Dks: Generally, each one of A,
Hks, and Dks can be estimated as a part of the ALS optimization
(estimate one of them when all other parameters are considered
fixed). However, in this paper a closed form solution for estimation
of all above parameters using Tucker based tensor factorization
is presented. Assume that all Pk matrices are estimated and let’s
define a new tensor which includes Yk slabs as:

Yk = X
T
k Pk (8)

Having orthogonal Pk and using the main model of Xk defined in
(3) implies

Yk = AGk (9)

where Gk = DkH
T
k . The tensor Y ∈ RNx×Ns×K includes Yks

and subsequently Gks. G ∈ RNs×Ns×K is called core tensor. If all
Hk were the same and equal to a fixed H the best tensor model for
Y would be a simple PARAFAC model. Also, if Hks were assumed
orthogonal PARAFAC2 could be the best model for factorization
of tensor Y with Yk slabs. However, in current application with
overlapped sources non of the above assumptions are valid and
therefore Tucker tensor model is preferred. This model supports
non-diagonal core tensor slabs (in contrary to Kruskal structure of
PARAFAC model in which the core tensor slabs are diagonal) [8].
Here the Tucker tensor model is briefly explained first. Then, it is
employed to estimate A, Hks, and Dks.
1) Tucker model: Tucker model is generalization of SVD de-
composition for tensors. Analogous to SVD/PCA for modeling
each matrix X ∈ RI×J comprising of F components we have

xij ≈
∑F

f=1aifbjfgff , where gff are proportional to the eigen-
values. Similar to SVD decomposition for our application, Tucker3
[9] can model a tensor X ∈ RI×J×K with Ns factors in all
its three modes (in general case number of factors for differ-
ent modes can be different but here they are considered equal)

as xijk ≈
∑Ns

d=1

∑Ns

e=1

∑Ns

f=1aidbjeckfgdef . As it can be seen
there is a core tensor G with gdef elements which is one part
of the Tucker3 model. Also there are simplified extensions of
Tucker3 model which have less parameters, such as Tucker2 in

which xijk ≈
∑Ns

d=1

∑Ns

e=1aidbjegdek, and Tucker1 represented by

xijk ≈
∑Ns

d=1aidgdjk. Generally, unlike PARAFAC based models,
the Tucker tensor factorization approach does not have unique
results. However, by imposing some restrictions on the model, it
tends to converge to a unique solution [8]. Here, Tucker1 has been
chosen to model the tensor Y to estimate the mixing channel A
as the factor related to the first mode and Hks and Dks as the
decomposition of core tensor matrices simultaneously. Based on
our assumptions Rk = HT

k Hks are supposed to be the correlation
matrices. This imposes a constraint to the core tensor to create a
specific structure with symmetric or specifically PSD matrices at
each slab along k. Moreover, non-negativity constraint on mixing
gains A is considered to obtain unique estimation of the parameters.
In order to estimate the parameters equation (9) can be rewritten

as:

Y = AG (10)

where Y ∈ RNx×(Ns×K) and G ∈ RNs×(Ns×K) are respectively
unfolded versions of Y and G .
2) Estimation of A: In an unconstrained scenario A can be

estimated easily as:
A = YG

†
(11)

where (.)† denotes pseudo-inverse operator. However, in the case
of having non-negative constraint on A, a minimization problem
can be defined to minimize the cost function Jn as:

Jn = ||Y − AG||F
s.t. aij ≥ 0 (12)

where aijs are the elements of matrix A. Above optimization
problem can be divided into some sub-problems for estimating each
row of A separately as:

Jni = ||yT
i − GT aT

i ||
s.t. ai ≥ 0 for i = 1, ..., Nx

(13)

where yi and ai denote respectively the ith row of Y and A.
There are some standard solutions for the above sub-problem such
as non-negative least squares (NNLS) or fast-NNLS [8],[10].
3) Estimation of Hks and Dks: To estimate Hks and Dks it

is necessary to estimate the core tensor G by estimation of its
unfolded version G. In an unconstrained scenario, estimation of G
can be simply performed by:

G = A
†
Y (14)

However, in case of having structural constraint it is necessary
to have symmetric PSD Rks matrices. As our constraint is not
defined for Hks directly a new variable Qk is defined to deal with
covariance matrix of each Gk as:

Qk = Sqrt(GT
k Gk) (15)

where Sqrt(.) denotes square root of a square matrix. This operator
is different from the operator which takes square root of all elements
of matrix separately; for more information refer to [11]. Above
procedure tries to obtain Qk as the nearest (or one of the nearest)
PSD matrices to Gk. After obtaining the PSD Qk, the target
parameters Hk and Dk can be easily estimated by:

Hk = Qkdiag(vk)†

Dk = diag(vk)
(16)

where vk is a vector which contains the column vector norm of Qk

and diag(.) builds a diagonal matrix with diagonal elements equal
to elements of the input vector. It can be seen that the columns of
Hk are normalized and also its covariance Rk = HT

k Hk builds a
correlation matrix. Moreover, the diagonal values of Dk show the
norm of each source vector in segment k.
The final ALS algorithm for estimation of all the parameters of

BSOS system is shown in Algorithm 1.

Algorithm 1 ALS Parameter Estimation of BSOS

Step 1 : Initialize all the model parameters randomly.
Step 2 : Estimate Pk using (7) for all k = 1, ..., K .
Step 3 : Solve (13) and estimate all rows of A using aT

i =
NNLS(GT ,yT

i ) for i = 1, ..., Nx.
Step 4 : Calculating G using (14), (15) and computing all Hks
and Dks for k = 1, ..., K .
Step 5 : Check the convergence rate σ = ||Jnew−Jold||/||Jold||
if σ > ε, go to Step 2 till convergence

4) Using BSOS for ERP subcomponent detection: By exploiting
non-negativity of mixing gains to A, super symmetrical structure
of the core tensor built by Gks, and orthogonality of all Pks, a
unique solution is expected. However, in ERP source separation
application having non-negative A may not be valid. The proposed
Tucker based model using unconstrained A may not have unique
estimation of the sources, for example, in this case a separated
source may be a mixture of P3a and P3b signals and the second
one is noise. Typically, the brain sources are considered as dipoles
in a forward model of the brain and based on the directions of
dipoles the mixing channels can be divided into those with positive
and negative gains depending on their position in the brain. So, a
group of mixing gains which are related to spatially neighboring
electrodes have the same polarity. This fact can be used to provide
sub-optimum initial values for the unconstrained algorithm (with
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no constraint on A) using the results of constrained (with non-
negativity constraint on A) algorithm. Therefore, if Algorithm 1,
which considers the mixing gains as positive, is applied to the
mixture of P3a and P3b signals for few iterations, the algorithm
will try to estimate a group of mixing gains that have the same
polarity and consider them as non-negative channel information.
All other mixing gains are considered to be zero. Since, not all
the gains are necessarily positive, this solution is not considered
as a general solution but it can be considered as a suitable initial
value for an unconstrained algorithm which does not impose any
constraint on the estimated A.
The final procedure for separating ERP subcomponent is shown

in Algorithm 2. In the next section the latter algorithm is applied

Algorithm 2 Estimation of BSOS parameters for separation of
ERP subcomponents

Step 1 : Produce the tensor model of mixture signals using
temporal segmentation.
Step 2 : Apply algorithm 1 for the produced tensor few
iterations (by choosing large σ such as σ = 0.1).
Step 3 : Estimation of Pk using (7) for all k = 1, ..., K .
Step 4 : Estimate unconstrained A using (11).
Step 5 : Calculating G using (14), (15) and computing all Hks
and Dks for k = 1, ..., K .
Step 6 : Check the convergence rate σ = ||Jnew −
Jold||/||Jold|| if σ > ε, go to Step 2 till convergence

to both simulated and real signals and the performance is shown by
comparing the results with those of standard spatial PCA method.

IV. EXPERIMENTAL RESULTS

Several simulations were carried out to validate and demonstrate
application of the proposed method. Moreover, the method is
applied to real EEG recordings for normal subject to separate
P300 subcomponents blindly. For real data study, the method was
applied to 30 different trials (related to target stimuli) for one
subject. All simulated and experimental data were compared with
spatial-PCA separation method using ERP PCA Toolkit [12]. Note
that, unlike different ERP signals such as N200 and P300 the
ERP subcomponents are temporally correlated. So, the spatial-PCA
method, which has better performance for separation of temporally
correlated, but spatially uncorrelated signals, is chosen as the
benchmark for comparison [3].
Simulated data: The synthetic EEG data contains ERP signals in
the interval between 250 and 500 ms after stimulus, respectively.
Two highly overlapped P300 subcomponents, P3a and P3b are
synthetically generated using gamma function [2]. A three-shell
homogeneous head model was used to generate the EEG data. The
sampling frequency was set to 250 Hz. The amplitudes, latencies,
and widths of the P300 subcomponents varied across trials. The
P3a was placed in centro-frontal and P3b in centro-parietal brain
locations which makes them spatially close to each other. The goal
of the simulation study was to evaluate the ability of the method
in estimation of P300 subcomponents and their scalp projections
in single trials with different SNR levels. The method was applied
to different mixtures of synthetic sources (considering 30 trials) at
different signal to noise ratios. The results for different experiments
were found approximately similar when SNRs are the same. Gen-
erally, the optimization process converged after approximately 80
iterations. The average localization and source separation errors of
the BSOS and PCA based methods are compared for 30 trials in
three different SNR levels. The error of estimation is calculated
by err = 10log( ||Z−Ẑ||2

||Z||2
) where Ẑ represents correctly reordered

and optimally scaled version of the any estimated Z . Table I

TABLE I

SPATIAL ERROR BETWEEN ORIGINAL AND SEPARATED P300

SUBCOMPONENTS IN DIFFERENT SNRS.
SNR (dB) 0 -5 -10
BSOS error (dB) -23.24±4.0905 -14.77±4.12 -7.37 ±1.85

PCA error (dB) -15.66±2.37 -5.67 ±3.05 -1.64±2.84

compares the averaged localization error for the two methods. Also,
the averaged temporal error are shown in Table II. Clearly, in low
SNR the proposed method outperforms the standard PCA based
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Fig. 1. Results for synthetic data; (a) original and estimated P300
subcomponents at SNR=-10dB, top left and right using proposed
method (error=-23.28dB), bottom left and right using PCA based
method (error=-7.80dB) and (b) original spatial information in
the middle row, estimated spatial information using the proposed
method (error=-8.86dB) and estimated spatial information using
PCA based method (error=1.03dB) in the bottom row.

method for both channel estimation and signal separation. In high
SNR, the signal separation error of the proposed method is slightly
higher than the PCA based method, but in this case the channel
estimation error is still better than that achieved by the PCA based
method. So, as an alternative solution in high SNR cases the sources
can be recovered using pseudo inverse of blindly estimated channel
A and the electrode signals X.

TABLE II

TEMPORAL ERROR BETWEEN ORIGINAL AND SEPARATED P300

SUBCOMPONENTS IN DIFFERENT SNRS.
SNR (dB) 0 -5 -10
BSOS error (dB) -28.98 ±2.21 -26.05±2.71 -20.47±2.78

PCA error (dB) -33.45±2.46 -22.30±2.58 -9.88±5.77

Figure 1 compares the results of the proposed method and PCA
based method in SNR=-10dB for estimating the subcomponents
and their spatial information. Expectedly, the proposed method has
shown better performance both spatial and temporal information in
SNR=-10dB. Table III compares the latencies of estimated sources
for both methods (The original latencies were chosen as 450 and
470 ms for first and second subcomponents respectively). Similar
to the reported signal errors, the proposed method outperforms the
PCA based method especially in low SNR.

TABLE III

LATENCIES OF ESTIMATTED P300 SUBCOMPONENTS FOR

DIFFERENT SNRS.
SNR (dB) 0 -5 -10
P3a by BSOS (ms) 450.38±0.71 448.16±4.73 455.93 ±6.64

P3a by PCA (ms) 449.79±0.66 454.09 ±7.29 461±12.84

P3b by BSOS (ms) 469.23±0.62 472.27±3.82 466.93 ±5.40

P3b by PCA (ms) 470.66±0.36 465.49 ±5.29 478±8.84
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Fig. 2. Latencies of estimated P300 subcomponents signals, top P3a
latencies using proposed method and PCA based method, bottom
P3b latencies using proposed method and PCA based method

Real data: Real EEG was recorded using a Nihon Kohden model
EEG-recorder system using 1kHz sampling frequency. EEG activity
was recorded using 10-20 system by 27 electrodes. The signals
were bandpass filtered between 0.1–40 Hz. Subjects were required
to sit alert and still with their eyes closed to avoid any interference.
The stimuli were transfered through ear plugs inserted in the ear.
Thirty target tones (1 kHz) were randomly distributed amongst 160
frequent tones (2 kHz). Their intensity was 65 dB with 10 and 50
milliseconds duration for rare and frequent tones, respectively. The
subject was asked to press a button when they hear a low tone (1
kHz). Each trial lasted 1300 ms and there was 500 ms prestimulus
and 800 ms poststimulus. ERP subcomponents measured in this task
included P3a and P3b using a temporal window which masks the
trial data between [200ms–450ms] after the stimuli. The algorithm
was applied to 30 target trials. The results for different trials were
nearly consistent (except for 3 trials which might be related to the
subject distraction). Interestingly the error of fitting process was
often less than 10 percent (because of having low pass filter in
preprocessing phase the noises are highly degraded). This means
that this experiment can be considered as a high SNR case for which
both methods have relatively the same results and efficiency for
simulated data. Figure 2 shows the measured latencies of separated
P3a and P3b signals using both methods. Both methods have close
results for both P3a and P3b latency measurement. Figure 3 shows
blindly estimated P3a and P3b signals and their spatial information
in one of the single trials.
According to the simulated data results it is expected to obtain

better performance of BSOS in low SNR compared with PCA-based
approach.

V. CONCLUSIONS

In this paper, a new method for single trial blind estimation
of ERP subcomponents is proposed. The method defines a new
extended PARAFAC2 based tensor model which supports the corre-
lation of the sources in its structure. The proposed method is robust
against temporal and spatial correlation between the ERP subcom-
ponents. Based on the defined tensor model, the fitting processes
to estimate the Tucker1 core tensor model and the orthogonal part
of segmented sources, Pk, have been developed. In the presence
of parametric and structural constraints, essentially unique solution
for separation of ERP subcomponents is achieved. Using blindly
estimated parameters of the proposed model, source separation and
localization of the P300 subcomponents is performed. Based on the
simulation results, the method is also robust against low SNR. Using
the simulated signals specially for low SNR scenarios, it is shown
that our method outperforms spatial PCA method. Consequently
a better approximation of P300 subcomponents and their scalp
projections has been obtained. The estimated scalp projections can
be used for more detailed localization (3D localization) of P300
subcomponents in the brain too. The method was also applied to
real data. The results were consistent with those of standard spatial
PCA. The proposed method is useful for some applications which
deal with variability of ERP subcomponents such as monitoring of
mental fatigue, Alzheimer’s, and drug infusion effects.
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Fig. 3. Results for real data (a) Estimated P3a and P3b signals, top
left and right using proposed method, bottom left and right using
PCA based method and (b) estimated topographies of P3a and P3b
signals, top left and right, using the proposed method, and estimated
spatial information of P3a and P3b using PCA based method in the
bottom row.
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