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Abstract— Extracting event-related potentials (ERPs) from
multichannel EEG recordings remains a challenge due to
the poor signal-to-noise ratio (SNR). This paper presents a
multivariate statistical model of ERPs by exploiting the existing
knowledge about their spatio-temporal properties. In particular,
a computationally efficient algorithm is derived for fast model
estimation. The algorithm, termed SIM, can be intuitively
interpreted as maximizing the signal-to-noise ratio in the source
space. Using both simulated and real EEG data, we show
that the algorithm achieves excellent estimation performance
and substantially outperforms a state-of-the-arts algorithm in
classification accuracies in a P300 target detection task. The
results demonstrate that the proposed modeling framework
offers a powerful tool for exploring the spatio-temporal patterns
of ERPs as well as learning spatial filters for decoding brain
states.

I. INTRODUCTION

Event-related potentials (ERPs) are brain responses both
time-locked and phase-locked to external stimuli [1]. They
can serve as “windows” on the brain and mind for studying
cognitive functions. However, since the ERP (signal) is
typically embedded in strong stimulus-unrelated spontaneous
EEG activities (noise), enhancing the signal-to-noise ratio
(SNR) entails averaging EEG data over a large number
of trials. Thanks to the advances in the high-density EEG
recording technique in the past decades, efforts have been
made to enable single-trial analysis of the ERP by exploiting
the spatial information of multichannel EEG signals [2].
The spatial information is typically extracted in the form
of spatial filters at the training stage based on multiple-trial
EEG.

A variety of techniques have been proposed for optimizing
spatial filters for ERPs, with varying degrees of success.
These encompass principal component analysis (PCA) [4],
independent component analysis (ICA) [5], and sparse com-
ponent analysis (SCA) [6]. A drawback with these techniques
is that they are not designed specifically for extracting
ERPs, hence achieving only suboptimal performance. As
a supervised variant of ICA, a regularized second-order
blind identification (SOBI) algorithm was proposed in [7] by
biasing the extraction focus of the SOBI algorithm towards
the subspace of the phase-locked components. It was shown
that substantial performance gain in the SNR was attained
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over the unregularized SOBI algorithm. Nonetheless, the
algorithm needs to be run multiple times to determine the
optimal degree of regularization, resulting in high compu-
tational cost. Moreover, the regularization scheme is based
largely on heuristics, for which there is no guarantee that
the resulting ERP sources attain the highest SNRs. Recently,
another spatio-temporal filtering method was proposed in
[8] as a noise canceller in the spatial domain. However, to
constrain the extracted ERP sources the method requires pre-
defined templates of the ERP waveforms, which can only be
obtained in an ad-hoc manner in many situations and the
choice often seems arbitrary.

In pursuing “optimal” spatial filters for retrieving ERPs,
ideally one would like them to maximize the ERP power
while being maximally orthogonal to spontaneous activities.
Besides, from a practical viewpoint, to be applicable in
real-time decoding of brain states the learning procedure
should possess fast computational speed to adapt to brain
dynamics. Inspired by these considerations, in this paper
we contribute a spatio-temporal modeling framework for
learning ERPs from multichannel EEG recordings. A fast
algorithm, which specifically maximizes the SNR, is derived
for efficient spatial filter design. The efficacy of the algorithm
is demonstrated via the analysis of both simulated and real
EEG data.

II. A SPATIO-TEMPORAL MODEL OF ERPS

A. Motivation

Our proposed spatio-temporal model of ERPs is motivated
by two observations:
• According to previous neurophysiological studies [1],

the ERP wave is approximately identical under repeti-
tive stimuli.

• The spontaneous EEG activities can be approximately
modeled by Gaussian distributions.

The first observation derives from the phase locking property
of ERPs. Although in practice there may well be inter-trial
variability in ERP amplitude and latency, the variations are
typically small compared with spontaneous activities. In this
case, the observation can still lead to a useful model [2]. The
second observation can be understood by referring to the fact
that the Gaussianity assumption is suited to modeling mildly
amplitude-modulated oscillatory activities as their kurtoses
are close to zero, a hallmark of Gaussian random variables
[3].
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B. Model Formulation

Let c,m, n, k (c ∈ [1, C],m ∈ [1,M ], n ∈ [1, N ], k ∈
[1,K]) denote the indices for channels, sources, sampled
time points, and trials, respectively. Within a specific trial k,
our proposed overdetermined (i.e., M ≤ C) spatio-temporal
model of ERPs is posed as follows:

xkn = Azn + ekn, n = 1, 2, · · · , N (1)

where xkn ∈ RC denotes the multichannel EEG signals;
zn ∈ RM denotes the ERP source signals; ekn ∈ RC denotes
the noise term consisting of spontaneous EEG activities as
well as any other activities that are uncorrelated with ERP.
A ∈ RC×M is the mixing matrix relating in a linear fashion
(up to the additive noise) the set of M ERP sources to the
set of C-channel EEG signals on the scalp. ekn is modeled
by a zero-mean multivariate Gaussian distribution with the
covariance matrix being Ψ:

p(ekn) = N (ekn|0,Ψ)

How are the aforementioned two observations manifested
in model (1)? The first observation is enforced by the
assumption that the time course of each ERP source remains
identical across trials. Note that zn (n = 1, 2, · · · , N ) are
treated as deterministic parameters in the model; no specific
distributional assumption is imposed on them. Besides, the
separate ERP sources allow for the modeling of ERP sub-
components that may reflect functionally distinct cognitive
processes. The second observation is taken into account by
the Gaussian distribution assumed for ekn. Note that in this
case the covariance matrix Ψ is unlikely to be diagonal.

C. Estimation Algorithm

The log-likelihood function for model (1) is

L = −N

2

K∑

k=1

[
N ln(2π) + ln |Ψ|+ (2)

1
N

Tr
{
Ψ−1(Xk −AZ)(Xk −AZ)T

}]
(3)

where Xk = [xk1,xk2, · · · ,xkN ], Z = [z1, z2, · · · , zN ],
Tr{·} denotes the trace of a matrix.

The goal is to obtain the maximum likelihood estimates
(MLEs) of the parameters {A,Z,Ψ} from the training data.
Suppose Ψ is known, we have the following theorem1:

Theorem 1: The MLEs of A and Z in model (1), denoted
by AML and ZML respectively, are solutions to the following
optimization problem:

min
A,Z

‖Ψ−1/2X̄−Ψ−1/2AZ‖F (4)

where ‖B‖F denotes the Frobenius norm of matrix B, X̄ =
1
K

∑K
k=1 Xk is the EEG data matrix averaged across trials,

Ψ−1/2 denotes the inverse of the principal square root of Ψ.
Since Ψ−1/2 whitens the noise term ekn in model (1),

Problem (4) is a low-rank matrix approximation problem
in the whitened space. As such, for notational convenience

1The proof of the theorem is omitted due to space limit.

henceforth Ψ−1/2A and Ψ−1/2X̄ are denoted by Ã and X̃,
respectively. It can be shown that ÃMLZML is given by the
leading M factors of the SVD of X̃. However, to further
identify ÃML and ZML we notice that there is the issue
of multiplication indeterminancy, i.e., ÃML can be right-
multiplied by any invertible matrix P as long as ZML is
left-multiplied by P−1.

To ensure uniqueness, analogous to the basic idea of PCA
we assume that ÃML is an orthogonal matrix and seek ÃML
such that the resulting ZML yields ERP sources with the
maximum power in the source space2:

max
Ã+

Tr
{
Ã+Rs[Ã+]T

}
s.t. Ã+[Ã+]T = I (5)

where Rs = 1
N X̃X̃T , Ã+ denotes the Penrose-Moore

pseudo-inverse of Ã.
From a pattern recognition’s viewpoint, maximizing the

power of the ERP sources can desirably increase the sensitiv-
ity of the ERP detection. Moreover, since the noise term has
been normalized, the objective function in Problem (5) can
also be viewed as the SNR of the ERPs in the source space.
Thus the foregoing estimation procedure can be interpreted
as an SNR maximizer, with Ã+

ML acting as the spatial filters.
Problem (5) is known to be solved by the eigenvalue

decomposition of Rs, for which many scientific computing
softwares offer standard routines for fast computation (e.g.,
eig.m in MATLAB). Once AML = Ψ1/2

[
Ã+

ML

]+ and
ZML = Ã+

MLX̃ are obtained, the MLE of Ψ i.e., ΨML, in
model (1) can be updated as follows:

ΨML =
1

KN

K∑

k=1

(Xk −AMLZML)(Xk −AMLZML)T (6)

Therefore, we arrive at an iterative parameter estimation
algorithm by alternating the estimation of A and Z via
solving Problem (5) and the estimation of Ψ using (6). The
algorithm can be initialized by setting Ψ = 1

KN

∑K
k=1(Xk−

X̄)(Xk − X̄)T . Convergence can be checked by evaluating
the log-likelihood function in (3) after each iteration: a very
small difference between the values of the log-likelihood
function in consecutive iterations indicates the convergence
of the algorithm. Moreover, the ERP source number can be
determined using the Akaike information criterion (AIC) [9].

For ease of reference, in the following the above algorithm
is referred to as SIgnal-to-noise ratio Maximizer for event-
related potentials (SIM).

III. EXPERIMENTAL EVALUATION AND RESULTS

The SIM algorithm is evaluated on both simulated data
and real EEG recordings. In the simulation where the ground
truth is known, the goal is to validate whether the algorithm
is able to recover reliably the true model settings generating
the simulated data. In the analysis of a P300 EEG data
set, the ERP estimates from the algorithm are qualitatively
assessed according to existing neurophysiological knowledge

2It is assumed that the degenerate case where the correlation matrix of
the obtained ZML is isotropic will not occur.
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Fig. 1. Simulated ERP sources. The two sources represent the two
subcomponents (P100 and P300) of a typical ERP waveform.

about the spatio-temporal properties of ERPs. Moreover,
the algorithm is employed for spatial filter design in a
target detection task; the classification accuracy serves as
a quantitive measure for the algorithm’s performance in real
EEG recordings.

As a comparison to show performance gain, in the target
detection task the SIM algorithm is benchmarked against the
regularized SOBI algorithm [7], as well as an approach using
multiple channels without spatial filtering. All computations
are done using MATLAB (The MathWorks, Inc.).

A. Simulations

1) Data Description: We investigate SIM’s performance
at varying SNR levels (-20∼10 dB). The SNR is defined as
the power ratio of the overall ERP activities to the overall
spontaneous activities in the channel space.

For each SNR, the Monte Carlo simulations consist of 50
runs. In each run, 100 trials of EEG signals are randomly
generated. Within each trial, 20 channels of EEG signals
are generated as the sum of the linear mixture of 2 ERP
sources and uncorrelated noise activities, with each channel
comprising 100 data points. The two ERP sources, simulated
using the Gamma function, are designed to resemble the two
subcomponents (P100 and P300) of a typical ERP waveform
(see Fig. 1). The noise activities are simulated as the sum of
the linear mixture of 16 spontaneous sources and Gaussian
white noise. The time courses of the spontaneous sources
are simulated as 1/f noise. The variance of the additive
noise at each channel is 1/5 of that of the noiseless signal
at the same channel. The 20 × 2 mixing matrix A for the
ERP sources and the 20 × 16 mixing matrix B for the
spontaneous sources are also randomly generated, with each
entry uniformly distributed within [0, 1]. The columns of
A are subsequently orthonormalized through Gram-Schmidt
process.

2) Results: We apply the SIM algorithm to the simulated
data sets. The correlation coefficient between the resulting
two estimated ERP sources and the true ones is used as the
performance index.

Fig. 2 shows the run-averaged correlation coefficients for
all SNR levels. It can be seen that even under poor SNRs
(< −10 dB), the recovered ERP sources by SIM show a
fairly good match with the true ones, with the correlation
coefficients higher than 0.7. As desired asymptotically, when
the SNR exceeds 5 dB the correlation coefficient approaches
1, indicating a perfect match. The simulation thus verifies
that the SIM algorithm successfully yields accurate estimates
for the parameters in model (1).
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Fig. 2. Run-averaged correlation coefficients between the estimated and
true ERP sources for SNRs within −20 ∼ 10 dB.

Furthermore, by tracking the running of the algorithm
we find that the increment of the log-likelihood function is
negligible after two iterations. Thus it is our belief that the
SIM algorithm typically enjoys a high convergence rate.

B. Real EEG Recordings

1) Data Description: Ten subjects (six male and four
female, aged 20-28) participated in our P300-speller experi-
ments [10]. The speller interface was composed of 36 virtual
buttons, each representing a letter or a digit, in the organi-
zation of six rows by six columns. During one acquisition
period of 15 trials (one block), subjects were instructed to
attend to a specific button and mentally count the number
of times the row, or the column, containing the designated
target character was intensified. Each trial consisted of 12
epochs, each associated with the intensification of a specific
row or column specified by a random sequence.

The EEG data were recorded using a Neuroscan SynAmps
system. A total of 30 surface electrodes were placed at
positions according to the 10/20 international system. Sig-
nals were sampled at 200 Hz. A linked-mastoids reference
was used. For each subject, single-trial EEG epochs (360
target/1,800 non-target) were derived in association with each
stimulus, beginning 200 ms prior to the stimulus onset and
lasting for 1,200 ms. All epochs were baseline corrected
with respect to the mean voltage over the 200 ms preceding
stimulus-onset, and digitally filtered at 1-15 Hz to minimize
DC drifts and power line interference.

Determining the presence of the P300 component can be
viewed as a binary classification problem. For this purpose,
each individual data set was split into a training set (180 tar-
get/180 nontarget) and a test set (180 target/1,620 nontarget).

Six feature extraction approaches were considered. The
1st approach employed SIM to design spatial filters using
all 30-channel EEG from the target epochs in the training
set, and defined the feature vector as the concatenation
of the amplitude of the three estimated ERP sources with
the largest power. The number of the ERP sources in the
model is determined using AIC. The 2nd∼5th approaches
were identical to the first except that regularized SOBI was
used for spatial filter design with varying values of the
regularization parameter in {0, 0.2, 0.6, 1} (0 corresponds to
unregularized SOBI). The 6th approach defined the feature
vector by simply concatenating the EEG amplitude of six
channels, namely Fz, Cz, Pz, Oz, PO7, and PO8. The choice
of these six channels for classification was advocated in [11].
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Fig. 3. Classification accuracies of the six feature extraction approaches.
SOBI-1∼4 denote regularized SOBI with the value of the regularization
parameter being 0, 0.2, 0.6, and 1, respectively.

To reduce dimensionality, each feature vector was resampled
at 20 Hz.

Fisher discriminant analysis was subsequently employed
for feature classification. The classification accuracies on
the test sets were used as the performance index for each
approach. Due to the low SNR of ERPs, trial average was
often performed to improve the classification accuracy. We
investigated the effects of number of trials averaged (1, 3,
and 5) on the classification performance.

2) Results: Fig. 3 depicts for the six feature extraction
approaches the classification accuracies averaged over the
ten subjects. It is evident that under the three trial-averaging
cases, SIM consistently yields the highest accuracies among
all approaches, followed by regularized SOBI with reg-
ularization parameter being 0.6 (SOBI-3 in Fig. 3). The
improvement is particularly conspicuous when the number
of trials averaged is low (5% and 4.42% increase over
SOBI-3 for the single-trial and 3-trial averaging cases).
The superiority of SIM over the other approaches is highly
significant based on the paired-sample Wilcoxon signed rank
test (all p-values< 0.005). It is also noteworthy that the
single-trial accuracy by SIM is comparable with the 3-trial
averaging accuracy by using the six channels without spatial
filtering. The excellent results of SIM are not surprising since
it has been shown in Section II that the algorithm specifically
maximizes the SNR of the ERP sources.

To gain intuition by visualization, Fig. 4 shows the spatio-
temporal patterns of the three ERP sources derived using
SIM for one subject. According to previous neurophysiology
studies, the sources depicted in the left and middle panels
could be related to the N2 and P2 peaks, which are the most
robust components for the flash VEPs [12][13]; while the
sources in the right panel may reflect late visual processing
(e.g., P300) [1]. The ERP sources of the other subjects
exhibit similar meaningful spatio-temporal patterns (data not
shown due to space limit).

IV. DISCUSSION AND CONCLUSION

The proposed spatio-temporal model of ERPs provides a
principled framework for further methodological develop-
ments. For example, the inter-trial variability in amplitude
or latency can be readily taken into consideration in our
model by modifying the model structure (e.g., by modeling
the variations as random effects in the model [14]). Another

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

A
m

p
li

tu
d

e

A

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

A
m

p
li

tu
d

e

B

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

Time (s)

A
m

p
li

tu
d

e

0
0

+ + +

_ _ _

+ +

C
+

_ _ _

Fig. 4. Spatio-temporal patterns of three estimated ERP sources from one
subject. The upper panels show the time courses of the ERP sources (units
of the amplitude arbitrary), and the lower panels show the corresponding
spatial patterns.

realm where our modeling framework may prove to be a
valuable starting point is the joint analysis of multi-way (e.g.,
multi-subject/condition) ERP data. Furthermore, it is worth
noting that although our ERP model is introduced in the
context of EEG analysis, it should be equally applicable to
the analysis of magnetoencephalographic (MEG) data.

In summary, we have proposed a spatio-temporal model
with a fast iterative algorithm for estimating ERPs. The
promising results suggest that it can be utilized as an effective
tool for spatio-temporal analysis of ERPs as well as spatial
filter design for decoding brain states.
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