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Abstract— The estimation of the Error Related Potential from
a set of trials is a challenging problem. Indeed, the Error
Related Potential is of low amplitude compared to the ongoing
electroencephalographic activity. In addition, simple summing
over the different trials is prone to errors, since the waveform
does not appear at an exact latency with respect to the trigger.
In this work, we propose a method to cope with the discrepancy
of these latencies of the Error Related Potential waveform
and offer a framework in which the estimation of the Error
Related Potential waveform reduces to a simple Singular Value
Decomposition of an analytic waveform representation of the
observed signal. The followed approach is promising, since we
are able to explain a higher portion of the variance of the
observed signal with fewer components in the expansion.

Index Terms— Hilbert transform, Singular Value Decomposi-
tion (SVD), phase plane, analytic signal, Error Related Potential
(ErrP)

I. INTRODUCTION

The estimation of a single waveform from a mixture of this

waveform and (noisy) background activity is a challenging

task with impact in a wide range of applications. When

the waveform is triggered by an external stimulus and

multiple observations are available, the waveform can be

distinguished from the ongoing background activity thanks

to the property of time locking. Under the hypothesis that

the background activity does not result from an interaction

with the stimulus, the former guarantees that summing over

the different observations marginalizes over the background

activity and thus uncovers the waveform. In this work we

will focus on these so-called phase locked waveforms in the

specific case of Event-Related Potentials.

Event-Related Potentials (ERP) are local potential fields

that emerge from the solicitation of a cortical neural pop-

ulation in order to disambiguate the interpretation of an

observed event, generally called the trigger or stimulus.

The ERP, as a response to these stimuli, is considered to

be composed of half waves (i.e. negative or positive half

periods of sinusoidal like signals) each having a specific

temporal latency with respect to the stimulus onset. However,

in practice we often do not observe these wave forms at exact

latencies but rather at small variations around a mean latency

value. The latter phenomenon gains in importance when the

stimulus response elicits higher level cognitive processing.

This is the case in the Error Related Potential (ErrP) based

on a feedback of the result to the participant. The feedback
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indicates whether the participant answered correctly in a

preceding cognitive task, e.g., memorization. If the feedback

is in conflict with the participant’s expectation, transient

changes (half waves) in the potential field of the electroen-

cephalogram (EEG) may be observed. It is suggested that in

case the feedback requires cognitive processing (comparison

between the expected outcome and the feedback), latencies

as well as their inter-trial variabilities augment.

Since the ErrPs are not observed in isolation but in the

presence of ongoing background activity, a straightforward

processing of the observations is to align multiple trials with

respect to the trigger onset and taking a (weighted) sum

over the trials. By summing over different trials, the ErrP

waveform is reinforced whilst the background activity – un-

correlated with the trigger onset – asymptotically approaches

its (supposed) zero-mean value. Whilst this method is by far

out the simplest approach to the estimation of the ErrP wave-

form, it is prone to errors inherent to the summing operation.

Firstly, the sum is taken over all trials, without distinguishing

between informative and non-informative trials. This default

could be overcome by choosing optimal weights, e.g., as

a function of the trial’s signal-to-noise ratio [1]. Secondly,

and more important, the summing suffers from the inter-

trial variabilities of the latencies over different trials [2].

Indeed, it can be shown that simple summing introduces

non-negligible errors, especially when the number of trials

is relatively low [3], [4].

In this work, we opt for a representation of the signal as

a waveform. We allow for transformations of the waveform

such as rotation in the phase plane and amplitude scaling [5]

rather than time shift and stretch [4]. This offers considerable

benefits in that we have a linear transformation. In addition,

we empirically show that the variance of the observations is

captured in less components with respect to a plain principal

component analysis.

II. METHODS

Notational Conventions

All signals considered are supposed to be continuous in

time. When calculations are performed, they are taken over

a time limited window after being sampled. We will not,

generally, explicit this sampling process in our calculations

and suppose that the effect of sampling can be neglected.

This is the case for ErrP waveforms since their frequency

band of interest is band limited (3 − 8Hz) with an upper

frequency generally far below half the sampling frequency

(typically 250, 500 or 1000Hz).
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We will denote by ℜ and ℑ the real part, respectively the

imaginary part of a complex number or vector. A column

vector will be denoted as x = (x1, x2, . . . xN )T and a matrix

constructed from temporal samples of a vector signal as X =
{x(t)}t. All other notations should be clear from the context.

A. Analytic Waveform Representation of a Signal

The Hilbert transform is used here to obtain the analytic

waveform representation of a signal. To obtain the Hilbert

transform [H(x)](t) of a continuous real time signal x(t) ∈
R, one convolves x(t) with the non-causal infinite impulse

response filter h(t) = (πt)−1. This filter is not integrable and

one may use the Cauchy Principal Value (PV ) However, in

practice, we will make use of the following identities:

∀fp :

{

[H(cos)](2πfpt+ φ) = sin(2πfpt+ φ)
[H(sin)](2πfpt+ φ) = − cos(2πfpt+ φ)

Suppose that the signal can be arbitrarily well approximated

by its Fourier series expansion1

x(t) =
∑

p

ap cos(2πfpt) + bp sin(2πfpt) ,

then – since the Hilbert transform is defined by a linear

operator – it follows that [H(x)](t) =
∑

p ap sin(2πfpt) −
bp cos(2πfpt) and thus the analytic signal

x̃(t) = x(t) + ı [H(x)](t)
=

∑

p(ap − ı bp)[cos(2πfpt) + ı sin(2πfpt)] .

For a limited time signal, ap and bp can be obtained from

its discrete Fourier transform, since [F(x)](fp) = 1
2 (ap −

ı bp), ∀fp > 0, and [F(x)](0) = a0, (b0 = 0). We thus obtain

the analytic waveform from the Fourier transform [F(x)](t)
of x(t) by considering

[F (x̃)] (f) =







0 , ∀f < 0,
[F (x)] (f) , f = 0
2× [F (x)] (f) , ∀0 < f ≤ Fs/2.

(1)

where Fs is the sampling frequency.

Back in the time domain we find that the real part of

our analytic waveform representation ℜ{x̃} (t) is precisely

the initially observed signal x(t). We may also identify

ψ(t) = tan−1 ℑ{x̃}(t)
ℜ{x̃}(t) with the instantaneous phase and

ω(t) = ∂ψ(t)/∂t with the instantaneous frequency of

the waveform. In other words, we may think of the an-

alytic signal representation as a (global2) time-frequency

representation of our signal. A local signal representation

of the signal x(t) as a waveform would thus look like

x̃(t) = |x̃(t)|eıψ(t) = |x̃(t)|eı(2πf(t)t−φ(t)), where |x̃(t)| is

also called the instantaneous amplitude or envelope of the

waveform.

1For a sampled signal this approximation is exact if the frequencies fp
are chosen as pFs/P for p ∈ {0, 1, 2, . . . , P − 1}, where P are the
number of available samples. In many cases the number of frequencies can
be considerably reduced without compromising this approximation.

2The representation is global, since the Fourier series coefficients are
obtained from the complete time series. The local character of the waveform
is thus defined in terms of global parameters.

B. Choosing the Best Waveform Representation

With the above Hilbert transform in mind, we can now

proceed to the estimation of the error related potential

waveform given a collection of signal observations x(t) ∈
R
N . Consider first an instantaneous mixture model, where

some underlying latent signals s(t) ∈ R
M are related to the

observations x(t) by a constant through time, but unknown

linear orthogonal transform A ∈ R
N×M , i.e. x(t) = As(t).

We consider that for some givenM ≤ N , the set S = {s(t)}t
explains best the set of observations X = {x(t)}t with

respect to the L2-norm. In other words,

(A, s) = arg min
(Q,b)

∑

t

‖x(t)−Qb(t)‖22 , (2)

where Q ∈ R
N×M , and QTQ = IM , the identity matrix in

R
M×M . The solution to the minimization problem of Eq. (2)

can be found by taking the singular value decomposition

(SVD) of X as X = UΣVT . A and S can then be identified

with the first M columns of the matrix U, respectively VΣT .

In a similar way, we may calculate the SVD of X̃ =
{x̃(t)}t as X̃ = ŨΣ̃ṼH , where the singular values on the

diagonal of Σ̃ are real3. Our set of observed signals x(t)
can thus be approximated as x(t) = ℜ{x̃} (t) ≈ ℜ{Ãs̃}(t),
where Ã and {s̃(t)}t can be identified with the first M

columns of Ũ and ṼΣ̃
T

, respectively. The set of generating

waveforms s̃(t) = {s̃m(t)}Mm=1 now is composed of analytic

signals. In addition to the amplitude scaling found in A, we

now also allow for a phase shift of the waveform by allowing

for complex entries in Ã. We may write equivalently

x(t) =

N
∑

m=1

ℜ{[ũm (σ̃mṽm)](t)} =

N
∑

m=1

ℜ{[ãm s̃m](t)} ,

(3)

where ãm is the m−th column of Ã. Taking the influence

of s̃m(t) on x̃n(t), we then find that

x̃n(t) = |ãnm| |s̃m(t)|e−ı(ψ(t)+∠ãnm) ,

which corresponds to an amplitude scaling and a phase shift

of s̃m(t)
The reconstruction of the observed signal is perfect, i.e.,

the equality holds in Eq. (3), since for M = N

x̃(t) = x(t) + ı [H(x)](t)

= ℜ
{

Ãs̃
}

(t) + ı ℑ
{

Ãs̃
}

(t) .

Despite the fact that the decomposition of x̃(t) is unitary, we

no longer have an orthogonal decomposition of the observed

signal part x(t). In what follows we will directly illustrate

the benefits of this method with respect to the estimation of

error related potentials.

3The singular values can always be chosen real. If they were not to be
real, it suffices to multiply the m-th singular value σm by rm = σ⋆

m/|σm|
and multiplying the corresponding columns of Ũ and Ṽ correspondingly
by (r′m)−1 and (r′′m)−1, with r′mr′′m = rm. Remark that this gives us

an infinity of solutions for Ũ and Ṽ. But this infinite solution set is an
equivalence class for the initial problem. As a consequence, we may choose
whatever representative.
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III. ESTIMATION OF THE ERRP

A. Data Description

Data have been recorded from 8 subjects, where ap-

proximately twenty error potentials have been evoked per

subject. The data was sampled at 500 samples per second

and forward-backward filtered with cut-off frequencies at 1
and 20Hz (twice a 2nd order Butterworth). Only results on

the Fcz channel over different trials, average referenced in a

standard 10-20 international system EEG, have been used in

this study.

B. Why the simple SVD does not work

It has already been reported in several works (see, e.g., [3],

[4]) that (weighted) summing induces errors whenever the

waveforms are temporally not perfectly aligned across the

multiple trials In Fig. 2 we show the projection of the trials

of a single subject (see Fig. 1) onto the subspace spanned

by the first component s1(t), i.e., u1(σ1v1(t)). It is clear

that the instantaneous mixture model can not cope with the

relative phase shift observed in the different xn(t). In fact,

the components vm(t),m > 1 show a corrective behaviour,

rather than being contributive components. In other words,

to cope with the temporal dispersions, one would need to

start from a leading signal and correct this signal for local

variations. In addition, since the waveforms are not aligned,

weighted summing clearly results in a broadening of the

estimated waveform, see Fig. 3.
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Fig. 1. The EEG signal as observed on a single lead (Fcz) during 20
ErrP trials. Time is given post-feedback stimulus. The signal contains a
superposition of background activity, interferences and the sought after
ErrP waveform. It is clear that the temporal latency is not constant for
all observations.

C. The Hilbert Transform or How to Introduce a Phase

Invariance

An estimation of the ErrP waveforms should be invariant

to possible shifts in latency for the reasons mentioned above

(see also [6], [2]). This invariance can be found in the SVD

of the analytic signal, since the components now are analytic

signals and the transfer matrix Ã contains an amplitude

scaling as well as a phase rotation. If we consider the impact

of a phase rotation on the local phase ψ(t) = ω(t)t + φ,

we observe that it adds a constant value to the local phase

ψ(t) 7→ ψ′(t) = 2πf(t)t + φ + θψ, whereas a time shift

would have led to ψ(t) 7→ ψ′′(t) = 2πf(t)(t + θt) + φ.
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Fig. 2. When reconstructing the EEG signal in different trials from a
single component, one cannot deal with waveform variations. This is due to
the underlying instantaneous mixture model which assumes that a temporal
sample xj(t) is directly related to a scaled version of v1(t).
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Fig. 3. (a) To correct for local variations on the main component, the SVD
introduces correctional components. A local optimum in s1(t) corresponds
approximately to a zero crossing of s2(t). The correction thus resembles
the second term of a Taylor series development of the observations, which
hints us that the relation is not linear/instantaneous. (b) The SVD of the
analytic waveform representation accounts for a rotation in the phase plane
and no correction terms are needed to cope with phase shifts. Instead, the
components appearing next in the series development are related to distinct
waveforms with lower amplitude.

However, for a narrow band signal, we have ψ′(t) ≈ ψ′′(t),
since f(t)θt = (fc + [∆f ](t)) θt ≈ fcθt, and the latter can

be identified with the constant θΨ.

The advantage of the phase rotation over the time shift

is that the former relies on linear operations only and as a

consequence can be considered a stable transformation. To

observe how a phase rotation acts on the analytic waveform

ṽ1, we refer to Fig. 6.

In Fig. 7, we show the explained variance profiles, calcu-

lated as

EVM =

∑

t ‖
∑M

m=1 amsm(t)‖22
∑

t ‖
∑N

m=1 amsm(t)‖22
=

∑M

m=1 σ
2
m

∑N

m=1 σ
2
m

(4)
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Fig. 4. When considering the projection of the observations on the first
component of the SVD of x̃, we observe that the real component ℜ{ã1s̃1}
accounts for phase shifted observations of the principal waveform s̃1 =
σ̃1ṽ1. ṽ1 is itself an analytic waveform, as shown in Fig. 5.
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Fig. 5. The analytic waveform ṽ1(t) with its real part (green) and imaginary
part (red) as projections.
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Fig. 6. The effect of a rotation in the phase plane. The signals correspond
to the projection of the obtained analytic signal on the plane spanned by
the time axis and the real axis. Phases are chosen between 0 and π and we
observe that a rotation of the analytic signal through e−ıπ corresponds to
a sign inversion.

for the regular signal representation, respectively as

EVM =

∑

t ‖ℜ{
∑M

m=1 ãms̃m(t)}‖22
∑

t ‖ℜ{
∑N

m=1 ãms̃m(t)}‖22
(5)

for the analytic waveforms. It is clear that to account for

the same variance of the observations, less components are

needed in the analytic approach with respect to a simple

orthogonal decomposition (SVD).
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Fig. 7. (gray) The cumulated explained variances for 8 subjects with a
variable number of trials and (black) the mean values over the 8 subjects.
The cumulated explained variances are calculated using the formulae of
Eqs. (4)& (5).

IV. CONCLUSIONS AND FUTURE WORKS

The proposed approach decomposes the analytic waveform

associated with the observations into its principal waveforms.

A such decomposition allows for a higher explained variance

of the observations with fewer terms in the expansion.

Empirically, we have shown that a single Hilbert princi-

pal component seems more informative than a single real

principal component. Possible applications can be found

in the integration into a classifier that distinguishes Error

Related Trials from Non-Error Related Trials. This presents

a considerable advantage for brain computer interfaces in

which the awareness of the user with respect to committed

errors could be tested accurately.

Future works will concentrate on the joint estimation of

spatial filters and trial specific phase shifts, as such being able

to integrate the current research in, e.g., linear classifiers.
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