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Abstract— The least squares fitting algorithm is the most
commonly used algorithm in Raman spectroscopy. In this
paper, however, we show that it is sensitive to variations in
the background signal when the signal of interest is weak.
To address this problem, we propose a novel algorithm to
analyze measured spectra in Raman spectroscopy. The method
is a hybrid least squares and principal component analysis
algorithm. It explicitly accounts for any variations expected
in the reference spectra used in the signal decomposition.
We compare the novel algorithm to the least squares method
with a low-order polynomial residual model, and demonstrate
the novel algorithm’s superior performance by comparing
quantitative error metrics. Our experiments use both simulated
data and data acquired from an in vitro solution of Raman-
enhanced gold nanoparticles.

I. INTRODUCTION

Raman spectroscopy is a powerful technique for analyzing

chemical compounds using laser light. It works by exploiting

the Raman effect, which is explained as follows. When

incoming photons hit a sample surface, most photons are

scattered elastically, after which they continue traveling with

the same energy and wavelength. However, a very small

fraction of the photons is scattered inelastically, meaning

that they lose energy and continue traveling with a longer

wavelength. The amount of energy lost by the photons de-

pends on the particular molecules they interact with. In fact,

the chemical bonds in the molecules absorb energy in highly

specific patterns. As a result, the Raman scattered photons

possess highly compound-specific wavelength spectra.

Raman spectroscopy exploits the Raman effect in order

to identify and quantify compound concentrations. It does

so by exciting a particular sample with photons from a laser

beam, and measuring the highly specific spectral fingerprints

of the resulting Raman scattered photons. Given that they

are known a priori, the spectra of compounds of interest

can then be extracted from the measured spectrum using an

appropriate signal analysis algorithm. Raman spectroscopy

allows rapid sample analysis of single or multiple compounds

(known as multiplexed analysis) at high detection sensitiv-

ities [5]. Amongst its many promising areas of application,

Raman spectroscopy has gained overwhelming interest from

the biomedical research community, where it promises to

enable sensitive imaging of nanoparticles for both diagnostic

and therapeutic applications [1], [5].
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Various methods have been used to analyze Raman spectra

(i.e. detect and potentially quantify compounds), such as

ordinary least squares [5], least squares with a low-order

polynomial background model [3], and principal component

analysis [4], [2]. While fast and quantitative, the ordinary

least squares method is sensitive to variations in the back-

ground spectrum and known compound spectra supplied

to the algorithm. Lutz et. al [3] addressed this problem

by allowing the background spectrum to vary according

to a low-order polynomial model. While this reduces the

sensitivity of the least squares fit to variations in the back-

ground signal, the algorithm cannot accommodate higher-

order variations such as the slight peak shifts and changes

in the relative amplitudes of peaks that have been observed

in practice. The principal component analysis (PCA) method

is a non-parametric method that does not require an explicit

background model. However, while useful as a classification

method for determining whether or not a particular com-

pound is present, PCA does not explicitly quantify the signal

strength of any compounds present.

In the current work, we develop a novel algorithm that

combines the strengths of least squares algorithms (quantita-

tive) and PCA methods (non-parametric). We test it on both

simulated data and data acquired from an in vitro solution of

Raman-enhanced gold nanoparticles [5]. From here on, we

refer to our method as the hybrid least squares and principal

component analysis (HLP) algorithm. Section II presents the

mathematical details of the method. Section III demonstrates

the improved performance of the novel method compared to

that of the least squares method with an explicit background

model [3].

II. METHODS

A. Least squares method with explicit background model

Here we briefly review the least squares method with a

low-order polynomial residual model, as proposed by Lutz. et

al. [3]. The measured spectrum can be modeled as a linear

combination of known spectra (a.k.a. reference spectra):

xl =

K
∑

k=1

wkSlk, wk ≥ 0, (1)

where xl is the modeled intensity at wavelength l, K is the

number of reference spectra provided, Slk is the value of

the reference spectrum of the kth compound at wavelength

l, and wk is the weight for the kth compound. In the method

proposed by Lutz et al. [3], the spectra Sk include the com-

pounds of interest as well as an average background signal
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and the q + 1 components of a qth order polynomial. The

concentrations of the various compounds are then estimated

by solving for the weights wk that give the closest fit with

the measured spectrum. This can be done by writing the

problem in the matrix form M = SW , where M is the

L×1 vector containing the measured spectrum values ml, S

is the L×K matrix of reference spectra, and W is the K×1
matrix containing the weights wk. The least squares solution

is then given by Ŵ = S†M , where S† =
(

STS
)−1

ST is

the Moore-Penrose pseudoinverse of the matrix S.

B. Novel hybrid algorithm (HLP)

As mentioned, the low-order polynomial model used

above cannot account for higher-order variations such as

changes in peak position and relative amplitude. Here we ex-

tend the signal model in order to account for such variations.

More specifically, we allow each of the reference spectra Sk

(not including low-order polynomial terms) to vary according

to the principal components of variation observed in sets of

previous scans of the respective compounds in isolation1.

For each reference spectrum, we penalize deviations from

the mean signal in accordance with the eigenvalues obtained

from the principal component analysis. In essence, this

constrains the variations in the reference spectra to the

statistically plausible. Mathematically, we extend the signal

model to

xl =

K
∑

k=1

wk

(

S̄lk +

P
∑

p=1

cpkZlpk

)

, (2)

where S̄k is the mean spectrum observed for compound k,

and Zpk is the pth principal component with a non-zero

eigenvalue for compound k, observed during prior char-

acterization experiments. Our objective is now to estimate

the coefficients W = {wk} and C = {cpk} that give the

best signal fit. We do so by using a Bayesian probability

framework, where we maximize the posterior probability of

W and C, given the measured signal M , the mean reference

spectra S̄, the principal components Z, and the eigenvalues

λ (corresponding to Z). Using Bayes’ theorem and the rules

of conditional probability, we can decompose this posterior

probability as

P (W,C|M, S̄, Z, λ) =

P (M |S̄, Z,W,C)P (C|λ)P (λ)P (S̄)P (Z)P (W )
1

N
, (3)

where N is a normalization constant, and we recognized that

P (M |S̄, Z, λ,W,C) = P (M |S̄, Z,W,C). We also assumed

S̄, Z, W , and C are statistically independent of each other.

The first term of Eqn. 3 is the data likelihood term.

Assuming statistical independence of the samples at each

wavelength, it is given by

P (M |S̄, Z,W,C) =
L
∏

l=1

P (ml|S̄, Z,W,C). (4)

1Note that our novel algorithm is also capable of incorporating a poly-
nomial background model, which is achieved by adding the appropriate Sk

spectra. However, in our experiments we found that this did not yield further
improvements in signal analysis accuracy.

Assuming a zero-mean Gaussian noise model, the probabil-

ities P (ml|S̄, Z,W,C) are given by

P (ml|S̄, Z,W,C) =
1√
2πσ

e
−

(ml−xl)
2

2σ2 , (5)

where σ is the standard deviation of the noise in the measured

signal. It can be estimated by taking repeated measurements

of the same location on a given sample. For the second

term in Eqn. 3, we assume that the coefficients cpk are

independent, which yields

P (C|λ) =
K
∏

k=1

P
∏

p=1

P (cpk|λ), (6)

where P is the number of non-zero eigenvalues2. By defini-

tion, the eigenvalues λpk obtained by the principal compo-

nent analysis are equal to the variance of the coordinates

obtained when projecting all data points on the principal

component axis corresponding to λpk, i.e. λpk = σ2

pk. Hence

we have

P (cpk|λ) =
1√
2πσ

e
−

c2
pk

2σ2
pk . (7)

Next, the prior probabilities P (λ), P (S̄), and P (Z) are

independent of W and C, and are hence of no consequence

to our optimization problem. Lastly, we assume a uniform

distribution for P (W ).
Following standard practice in optimization problems, we

optimize the logarithm of the Bayesian cost function given

in Eqn. 3. This simplifies the optimization problem by

converting multiplications into summations. After dropping

constant terms and cancelling common factors, the cost

function can be reduced to

ψ(W,C) = −
L
∑

l=1

(ml − xl)
2 − β

K
∑

k=1

P
∑

p=1

c2pk

σ2

pk

(8)

where β = σ2. Note that Eqn. 8 takes the familiar form of

a penalized maximum likelihood (PML) problem, where β

functions as the hyperparameter.

The cost function in Eqn. 8 can be efficiently optimized

(maximized) by alternatingly solving it as a standard least

squares problem in W , and a Tikhonov regularized least

squares problem in C. Convergence was observed in all

experiments after on the order of 100 iterations. For the

experiments in Section III, where L = 1015, the time per

iteration was 0.02 seconds. All coefficients were initialized

with a zero initial guess. The expression for the update of the

coefficients wk is, similar to in Section II-A, given by Ŵn =
S†nM , where S†n is the Moore-Penrose pseudoinverse of

the nth estimate of the L×K matrix S, which is composed

of the signals Slk = S̄lk +
∑P

p=1
cnpkZlpk, where cnpk are

the latest estimates of cpk. To obtain the update steps for

2In practice, one can select a limited number of principal components
corresponding to the largest eigenvalues, since they already capture most of
the variation seen in prior characterization experiments. However, we found
that such a selection was unnecessary, as the computation time was already
minimal, and the problem already well-defined by the regularization using
the eigenvalues.
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the coefficients cpk, it is instructive to substitute Eqn. 2 into

Eqn. 8, and to rewrite the latter as

ψ(C) =

−
L
∑

l=1

(

pl −
K
∑

k=1

P
∑

p=1

cpkw
n
kZlpk

)2

− β

K
∑

k=1

P
∑

p=1

c2pk

σ2

pk

, (9)

where pl = ml −
∑K

k=1
wn

k S̄lk, and wn
k are the latest

estimates of wk. To formulate our update step, we store the

elements pl into an L×1 vector Q, and the elements wn
kZlpk

in an L×KP matrix A = {wkZlpk}. The matrix C is of size

KP×1. Maximizing Eqn. 9 is then equivalent to minimizing

the cost function

φ(C) = −ψ(C) = ||AC −Q||2 + ||ΓC||2, (10)

where Γ =
√
βIσ′ , and Iσ′ is a KP ×KP diagonal matrix

that contains the values 1

σpk
= 1√

λpk

along its diagonal

entries. Eqn. 10 is a standard Tikhonov regularized least

squares problem, and has the explicit solution

Ĉ =
(

ATA+ ΓTΓ
)−1

ATQ. (11)

III. RESULTS

Here we compare the performance of the least squares

algorithm using a third-order polynomial background model

(LS-3P)3 to that of our hybrid least squares PCA (HLP) algo-

rithm, for various nanoparticle signal strengths (see below).

We present preliminary results for cases where K = 2. In

other words, the signals considered contain one compound

spectrum of interest and one significant background signal.

A. Simulation results

In this section, we simulated the presence of a signal

of interest within a background signal. Both signals were

subject to a realistic amount of variability. The experiment

was repeated for various relative amplitudes of the signal

of interest, and was designed to characterize the accuracy

with which the weight of the signal of interest could be

recovered, in spite of variability in both the signal of interest

and the background signal. To obtain a realistic amount

of signal variability, we collected real Raman spectroscopy

signals from a 0.8nM solution of Raman-enhanced S440 gold

nanoparticles produced by Oxonica (now owned by Cabot

Security Systems, Boston, MA, USA), as well as signals

from a paraffin background material. By performing raster

scans across the solution as well as background material, we

obtained 106 signals for the S440 nanoparticle solution, and

476 signals for the paraffin background. The collection of all

signals and the mean signal for each set are shown in Fig. 1.

For each simulated S440 signal strength, we performed a

series of leave-one-out experiments. In each such experiment,

we picked one S440 signal, and one paraffin background

signal. The remaining signals in our data base were then used

to compute the mean S440 and background signals, as well

3The third order polynomial was found to give optimal results for similar
Raman signals as the ones used here by Lutz et al. [3].

(a) S440, all (b) paraffin, all

(c) S440, mean (d) paraffin, mean

Fig. 1. Acquired signals and mean signal. Left: S440 nanoparticle. Right:
paraffin background.

as their respective principal components. We then simulated

a measurement signal by weighting the chosen S440 signal

and adding it to the chosen paraffin background signal4. This

was done for S440 weights of 20, 2−1, ..., 2−12, and 2−13.

The performance of each method was evaluated using the

fractional error, defined as FE = |West−Wtrue|
Wtrue

, where West

and Wtrue are the estimated and true weights of the S440

signal (which are roughly linearly related to the nanoparticle

concentration). An example spectrum, as well as the fitted

spectra by LS-3P and HLP are shown in Fig. 2(a). The

fractional errors, as well as their mean and standard deviation

are shown for both algorithms in Fig. 2(b-d). The HLP

algorithm clearly outperforms the LS-3P algorithm at all

weights/concentration levels for the S440 signal, and most

markedly so at lower strengths of the S440 signal.

B. Experimental results

To demonstrate that HLP outperforms LS-3P on exper-

imental data as well, we designed another example where

the background signal varied significantly. We placed eight

drops of decreasing concentrations of S440 nanoparticles on

paraffin, which was in turn placed on a background of various

colors (see Fig. 3). The colors each had distinct Raman

spectra, and were obtained by printing a color image of

a matrix of random numbers between 0 and 1. The mean

signal, as well as the collection of all signals obtained from

a raster scan of the background are shown in Fig. 4. The first

drop had a concentration of 0.8nM, and subsequent drops

were obtained by each time halving the concentration. The

logarithm-transformed (base 2) images of the estimated S440

signal strength are shown in Fig. 3 for both the LS-3P and

4Hence the total number of combination experiments per simulated S440
signal strength was 106× 476 = 50, 456.
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(a) example spectra (b) all FE

(c) mean FE (d) st dev FE

Fig. 2. (a) Example of fitted spectra and (b-d) fractional errors by the
LS-3P and HLP algorithms.

Fig. 3. Top: Experimental phantom. Middle: log2 of S440 signal by LS-3P.
Bottom: log2 of S440 signal by HLP.

HLP algorithms. The black pixels in the images are points for

which the algorithms produced negative weights. The signal

estimates by HLP and LS-3P are almost identical when the

nanoparticle signal strength is high. However, HLP proves

far more stable than LS-3P when the nanoparticle signal

strength is low (i.e. when variations in the background signal

become more significant). The relationship between the drop

concentrations and the estimated signal weights was found to

be approximately linear (not shown due to space limitations).

IV. CONCLUSIONS AND FURTHER WORK

A. Conclusions

In this work, we showed that the LS-3P algorithm for Ra-

man spectroscopy is sensitive to variations in the background

signal when the nanoparticle signal of interest is weak. We

proposed a novel algorithm (HLP) that is more robust to such

background variations. Improved performance was shown for

both simulated and experimental data. The simulated data

was generated by digitally combining weighted instances of

Fig. 4. Signals from background scan. Left: all signals. Right: mean signal.

experimentally obtained background and nanoparticle spec-

tra. The experimental data was obtained from serially diluted

in vitro solutions of Raman-enhanced gold nanoparticles.

B. Further work

While the background signal in our experimental data

was of an artificial nature (obtained from a color printout

from an office printer), we expect the HLP algorithm to

become useful for future in vivo experiments, where inherent

tissue variations or variations in ambient light may cause

background signal variations. A likely example is joint

white light and Raman colonoscopy, where both the tissue

background and the intensity of the LED light reflecting

from the colon wall may vary. The varying contributions

of ambient light cannot be generally captured by a low-

order polynomial. In our future work, we will also further

characterize the quantitative accuracy of the HLP algorithm

in terms of its ability to estimate the concentration of one

or more nanoparticle solutions. Second, we will evaluate

the merits of a Poisson instead of Gaussian noise model in

decreasing the lowest detectable nanoparticle concentration.

Third, we will examine the performance of HLP for multi-

plexed spectroscopy (K > 2). Lastly, we will evaluate the

performance of HLP for in vivo imaging data (eg., in mice

or in pig colon).
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