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Abstract―DNA copy number variation (CNV), an important 
structural variation, is known to be pervasive in the human 
genome and the determination of CNVs is essential to 
understanding their potential effects on the susceptibility to 
diseases. However, CNV detection using SNP array data is 
challenging due to the low signal-to-noise ratio. In this study, 
we propose a principal component analysis (PCA) based 
approach for data correction, and present a novel processing 
pipeline for reliable CNV detection. Tested data include both 
simulated and real SNP array datasets. Simulations 
demonstrate a substantial reduction in the false positive rate of 
CNV detection after PCA-correction. And we also observe a 
significant improvement in data quality in real SNP array data 
after correction. 

I. INTRODUCTION 

Copy number variation (CNV) is a type of genetic 
variation caused by large segmental insertions or deletions in 
a DNA sequence. Considering the affected nucleotides, 
CNVs may account for more overall inter-individual genetic 
variations than single nucleotide variants combined [1]. 
While the majority may be mildly deleterious, specific 
CNVs have been identified to be associated with cancer [2], 
HIV infection [3], autism [4, 5], and schizophrenia [6, 7]. 

One commonly used technology to assess genomic CNVs 
is through genomic single nucleotide polymorphism (SNP) 
arrays [8-11]. Typically, the Log R Ratio (LRR) and B allele 
frequency (BAF) are measured for each SNP marker. LRR 
represents the normalized overall fluorescent intensity from 
both alleles in a log 2 format, while the BAF measures the 
fluorescent intensity ratio between two alleles. With the 
developing high throughput genotyping technique, genomic 
SNP arrays can provide high density profiles. For instance, 
the Illumina 1M array has a median spacing of 2.5Kbp 
between adjacent markers [11]. However, the reduced length 
of probes may result in a low signal-to-noise ratio (SNR) of 
hybridization [12], which makes the reliable detection of 
CNVs challenging. As noted by Scherer et al. [13], the 
consistency of CNV detection results in the literature is quite 
low. Therefore, quality improvement emerges as a crucial 
need for the outputs of the high-resolution arrays. In LRR 
data, one major source of noise has been identified to be 
GC-percentage (i.e. the percentage of nitrogenous bases on a  

 
 
 
 
 
 
 

DNA molecule that are either guanine or cytosine), whose 
effect can be eliminated using a regression-based method 
[14, 15]. 

In this paper, we propose a data correction approach using 
principal component analysis (PCA) and present a 
processing pipeline with PCA-correction incorporated, 
aiming at improving the reliability of CNV detection 
through imposing stringent controls on false positives. The 
performance of the PCA-correction was evaluated through 
simulations from multiple perspectives, including variance 
of the raw data, false positive rate (FPR) and false negative 
rate (FNR) of CNV detection. Furthermore, we applied 
PCA-correction to a real SNP array dataset, and conducted 
CNV detection via the proposed pipeline process.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of the proposed processing pipeline 

II. METHODOLOGY 

The suggested pipeline is illustrated in Figure 1. For LRR 
data, we first perform outlier smoothing, and then apply 
PCA-correction to eliminate variations induced by potential 
confounding factors. Samples are excluded if they fail the 
quality control after PCA-correction. The corrected data are 
then segmented using a circular binary segmentation (CBS) 
algorithm and a hidden Markov model (HMM) algorithm 
independently. Those segments reported by both algorithms 
are flagged as potential CNVs, whose qualities are further 
investigated through SNR. A CNV segment is called only 
when its SNR passes the preselected threshold. Finally we 
exclude outlier samples with excessive number of CNVs. 

A. PCA-correction 

A PCA-correction scheme is proposed to remove the 
variations in the LRR data induced by potential confounding 
factors. Using PCA, LRR data are decomposed into a linear 
combination of underlying principal components (PCs), with 
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each PC accounting for a certain amount of variance. If the 
PC reflects some confounding factor such as scanner 
artifacts or GC-percentage, then the data quality can be 
theoretically improved by removing the effect of this PC.  

PC extraction is based on singular value decomposition, as 
shown in (1). X is the LRR dataset composed of m markers 
and n samples. Each column of V is the projection of a PC, 
or loadings. S is a diagonal matrix with each diagonal 
element being a singular value, which is proportional to the 
square root of the variance represented by the corresponding 
component. Here, r denotes the number of components. U is 
the counterpart of V, or the representation of X in the 
principal component space.  
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Pearson correlation or analysis of variance (ANOVA) is 
used to assess the association of PCs with all the potential 
continuous or categorical confounding factors. The 
association test is either evaluated on U, when the factor is a 
genomic feature along marker space such as GC-percentage, 
or on V when the factor is a sample feature along sample 
space such as batch effect. A PC with a significant 
association after Bonferroni correction is identified to 
represent a confounding factor and removed as presented in 
(2). X can be written as a linear combination of r 
components. If, for example, the kth component has been 
identified representing a confounding factor, we simply 
subtract Xk from the original X to eliminate the variations 
induced by that factor, and obtain the corrected dataset Xc, 
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B. Processing pipeline 

Outlier smoothing: Outliers manifest as large negative or 
positive values appearing at only one marker location. An 
isolated outlier can affect the regional LRR mean, resulting 
in incorrectly assigned segments. Here we adopt the method 
introduced by Olshen et al. [16] for outlier smoothing. 
Briefly speaking, it is to replace any local maximum or 
minimum, which is 4-standard deviation (SD) away from its 
nearest neighbor in the local 5-marker window, using the 
value of 2-SD plus the median. 

Sample quality control: After the outlier smoothing and 
PCA-correction, the data quality can still vary dramatically 
from sample to sample. Therefore, samples with standard 
deviation of LRR data (LRR_SD) greater than 0.28, as 
recommended in [17, 18], are considered as bad samples, 
and excluded from subsequent analysis. 

Segmentation: Segmentation is performed with two 
independent algorithms: CBS [16] implemented in 
MATLAB; and HMM segmentation implemented in 
PennCNV [14]. The default settings are chosen for both 
algorithms. A segment is flagged as a potential CNV only 
when it is detected by both algorithms. 

Segment quality check: We further evaluate the qualities 
of potential CNVs based on SNR. For each potential CNV, 
we extract a number of neighboring markers to cover a 
comparable length of base pairs, serving as a reference. Then 
the SNR is evaluated as the ratio of LRR mean difference 
between the potential CNV and the reference over the 

LRR_SD of the reference. A potential CNV is finally 
validated if its SNR is greater than 1.4 in case of insertions, 
or greater than 2 in case of deletions, where the thresholds 
are estimated empirically based on the LRR means of single 
insertions and deletions, respectively. 

Outlier Sample Elimination: Finally based on the detected 
CNVS, we eliminate those outlier samples for which an 
excessive number of CNVs are detected (> 3SD). 

III. SIMULATION DESIGN 

Synthetic SNP array data were prepared to evaluate the 
effectiveness of the PCA-correction. To closely represent the 
real data characteristics, we inherited the chromosome 1 
markers’ names and positions in the Illumina Human-1M 
Duo SNP array (97964 markers), and simulated three types 
of noise effect: GC-percentage [15], batch effect (scanner 
and processing date) and random noise. A total of 200 
samples were generated.  

GC-percentage effect: The baseline LRR data were first 
constructed to incorporate GC-percentage induced noise. For 
each marker, we computed the GC-percentage Gj, based on 
UCSC gc5base table (http://genome.ucsc.edu), and applied a 
linear regression model to create the baseline of LRR data. 
As noted in (3), Lij represents the baseline LRR at the jth 
marker of the ith sample; βi0 and βi1 are the intercept and the 
slope, varying across samples and following normal 
distributions; εij is the normally distributed residual imposed 
to randomize the GC-percentage effect in each sample.  
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Batch effect: A common LRR genomic profile was 
superimposed onto each sample with different weights, to 
emulate the batch effect. The 2nd PC extracted from real data 
was used as the common LRR profile. As shown in (4), the 
baseline LRR (Lij) was adjusted by adding the genomic 
profile with a different weight (αi) for each sample. We 
simulated four experiment batches with different weights.  
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Gaussian noise: Zero-mean Gaussian noise with various 
SDs was imposed on each sample to reflect variations 
induced by unknown factors. We simulated two groups with 
low-SD and high-SD Gaussian noise, respectively. 

True CNVs, including both segment insertions and 
deletions, were superimposed onto each sample’s adjusted 
LRR profile. The number of imposed CNVs ranged from 1 
to 14 across samples, with a median of 6.  

The final simulated LRR data consisted of imposed CNVs 
and three types of noise. The GC-percentage effect varied 
across samples (|rLRR-GC| ranging from 0.01 to 0.74 with a 
median of 0.28). The overall LRR_SD of each sample 
ranged from 0.20 to 0.39 with a median of 0.27. 

For the purpose of evaluating the effectiveness of PCA-
correction, we chose to only apply PennCNV algorithm, 
instead of the whole pipeline, which requires less 
computation yet proves the concept. FPR and FNR were 
calculated by comparing the PennCNV results with the true 
imposed CNVs. The detection accuracy was evaluated based 
on the full simulated dataset without excluding bad samples.  
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IV. EXPERIMENTS 

A. Participants 

The study was conducted according to the principles 
expressed in the declaration of Helsinki, approved by the 
institutional review board of University of New Mexico. A 
total of 326 healthy participants between the ages of 21 and 
55 were recruited, including 100 females age 32.62  10.47 
and 226 males age 31.58  9.38. Participants had a minimum 
alcohol consumption of two binge drinking days per week. 
Demographic information and behavioral assessment scores 
were obtained through self-reporting questionnaires 
administered during interviews with participants. All 
participants provided written informed consent for data 
collection and subsequent analysis.  

B. DNA genotyping 

Participants were instructed to deliver 5 ml of saliva into a 
sterile 50 ml conical centrifuge tube. DNA was then 
extracted from saliva, purified, bisulfite converted and 
hybridized. The Illumina Human-1M Duo BeadChip was 
used to detect 1,199,187 genome-wide SNP and CNV 
markers. A focus on autosomes (chromosome 1 – 22), 
reduced the number of loci to 1,147,842. 13,567 additional 
loci with missing measurements were also removed. The 
final dataset included 326 samples and 1,134,275 markers.  

V. RESULTS 

A. Simulations 

Ten independent datasets were tested and results indicated 
consistent performance. Using PCA-correction, the first two 
components were identified as representing GC-percentage 
and batch effect, summarized in Table 2a. After correcting 
for these two types of noise effects, the number of bad 
samples decreased from 76 to 40 in the high noise group and 
10 to 4 in the low noise group, resulting in improved 
detection accuracy, as shown in Table 2b and 2c, where we 
can see a significant improvement of FPR in CNV detection, 
as well as a slight improvement of FNR. Finally, a 
performance comparison was made between PCA-correction 
and regression-based correction [15], as shown in Table 2d. 
The results indicated comparable detection accuracies, with 
PCA-correction showing a slight improvement.  

To separately investigate the influences of different types 
of noise on CNV detection, further analysis is limited to the 
GC-percentage corrected data.  

We observed a significant group difference between high 
and low Gaussian noise, in terms of false negatives, as 
illustrated in Table 3. A further comparison was made 
among three independent datasets, different only in the level 
of GC-percentage effect, measured by the absolute 
correlation between GC-percentage and the simulated LRR 
data (|rGC-LRR|). The ANOVA test showed a significant group 
difference among these three datasets in terms of false 
positives, as shown in Table 4. However, after correcting for 
GC-percentage using PCA, the FPRs all went down to a low 
level around 0.04 and no group difference was observed. 

B. Experiments 

Table 1. PCA and data quality evaluation (simulation) 
Table 2a. PCA-correction 

Designed  feature GC-percentage Date and scanner 
Identified Component 1st 2nd 

P-value <1E-23 <1E-23 

Table 2b. Evaluation of data quality 

Data Quality High noise Low noise 
σLRR Nsub_ex σLRR Nsub_ex

Uncorrected 0.30±0.03 76 0.25±0.03 10 
Corrected (Comp. 1) 0.28±0.02 46 0.23±0.02 4 

Corrected (Comp. 1,2) 0.28±0.02 40 0.22±0.02 4 

Table 2c. Detection Accuracy: PCA-correction 
Total generated markers with CNVs: 75867 

PennCNV results Overall FPR Overall FNR 
Uncorrected 0.6220 0.1374 

Corrected (comp. 1) 0.0389 0.0940 
Corrected (comp. 1,2) 0.0351 0.0886 

Table 2d. Detection Accuracy: regression-based correction 
PennCNV results Overall FPR Overall FNR 

GC-percentage corrected 0.0389 0.0944 
Note: high/low noise: group with high-SD/low-SD Gaussian noise, each 
containing 100 samples; σLRR: overall standard deviation of the simulated 
LRR data for each sample; Nsub_ex: number of bad samples failed by quality 
control; FPR and FNR are calculated with regard to the total number of 
markers with CNVs. 

Table 2. Evaluation of false negatives vs. Gaussian noise 
Corrected High noise Low noise 
σGaussian 0.28±0.02 0.22±0.01 

FNs 21±32 6±11 
ANOVA P-value = 4.92E-06 

Note: σGaussian denotes the standard deviation of the imposed Gaussian noise. 

Table 3. Evaluation of false positives vs. GC-percentage 
Uncorrected GC1 GC2 GC3 

|rLRR-GC| 0.35±0.21 0.30±0.18 0.25±0.17 
FPs 444±678 236±407 155±334 

ANOVA P-value = 2.34E-08 

Overall FPR GC1 GC2 GC3 
Uncorrected 1.1710 0.6220 0.4090 
Corrected 0.0413 0.0389 0.0317 

Note: GC1, GC2 and GC3 represent the three datasets with different levels 
of GC-percentage effect, each dataset containing 200 samples. |rLRR-GC|: 
absolute correlation between LRR data and GC-percentage. 

Table 4. PCA and data quality evaluation (experiment) 
Factor Component P-value 

GC-percentage 1st, 4th, 6th, 7th < 1E-23 
Gender 7th 6.42E-5 

Data Quality Uncorrected Corrected 
σLRR 0.25± 0.08 0.18 ± 0.05 

Nsub_ex 68 14 

Table 5. Statistics of detected CNVs 
5228 CNVs: 2220 insertions vs. 3008 deletions 

CNV Statistics Min Median Max 
NCNV (per sample) 2 17 43 

LCNV (Kbp) 0.5 10.5 2916 
Note: 305 samples. NCNV: number of CNVs; LCNV: CNV length. 

 

In the real SNP array data, four components representing 
GC-percentage and gender were corrected using PCA. Table 
5 lists the PCA results and the data quality evaluation, where 
54 samples are saved by PCA-correction. Due to the 
unavailability of the ground truth, no evaluation was made 
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on FPR and FNR for real SNP array data. After 14 samples 
were excluded by the quality control, the 312-sample dataset 
were sent for segmentation and CNV calls. Based on CNVs 
confirmed through the pipeline, an additional 7 samples 
were determined to be outliers due to the larger numbers of 
detected CNVs, and thus excluded. Table 6 demonstrates the 
final CNV calls from 305 samples. The median number and 
size of CNVs were comparable to previous reports (~22 
CNVs per sample with a median size of 13Kbp) [14]. 

VI. DISCUSSIONS AND CONCLUSIONS 

PCA-correction: PCA-correction provides a complete data 
decomposition, which allows a non-parametric data 
correction helping CNV detection by significantly reducing 
FPR and slightly reducing FNR. Compared to the previously 
proposed regression-based method [15, 19], PCA-correction 
shows a slight improvement in detection accuracy for 
corrected data. More important is the flexibility of PCA-
correction which can be extended to correct other categorical 
confounding factors along sample space, such as the batch 
effect or input DNA quantity values [20], whose influences 
on the data may be difficult to isolate otherwise.  

FPR vs. FNR: These two measures are employed to 
evaluate the accuracy of CNV detection. While FPR is 
greatly reduced after eliminating the variations induced by 
GC-percentage (Table 2c), a slight improvement is observed 
in FNR for corrected dataset. The results imply a stronger 
influence from GC-percentage effect on FPR than on FNR. 
The ANOVA test in Table 3 shows a significant group 
difference in the false negatives, but not in the false 
positives, between the two groups with different levels of 
Gaussian noise, indicating that it is more likely to miss a true 
CNV when Gaussian noise level is higher. Further tests on 
three different levels of GC-percentage effect datasets 
confirm with previous conclusions. As shown in Table 4, 
false positives significantly differ among the three 
uncorrected datasets. After correction, no group difference is 
observed in either false positives or false negatives. This 
provides more evidence that GC-percentage induced 
variations strongly affect false positives.  

GC-percentage vs. Gaussian noise: These two factors 
influence two types of errors in different ways. GC-
percentage induces oscillations in the LRR data. Since the 
CNV detection tries to locate regions with significant 
alternations in LRR, it is sensitive to oscillatory noise, which 
explains the higher FPR when GC-percentage effect is 
stronger. On the other hand, with increased variations 
induced by Gaussian noise, the difference in LRR between 
aberrant and normal regions becomes less significant, which 
leads to false negatives.  

CNV call: Final CNV calls incorporate reports from both 
CBS and HMM methods. The use of two detecting 
algorithms is a conservative approach. Together with the 
subsequent segment SNR evaluation, it imposes a highly 
stringent control on false positives, which is expected to 
improve the reliability of the confirmed CNV regions and 
avoid the inflation of CNV calls.  

In summary, we propose a PCA-based correction for LRR 
data, and incorporate outlier smoothing, quality control, two 

segmentation algorithms and a final SNR evaluation into the 
processing pipeline for CNV detection. Both simulation and 
experiment results show that PCA-correction significantly 
decreases the fluctuations in LRR data, and simulations 
further confirm that PCA-correction leads to a significant 
improvement in FPR, along with a slight improvement in 
FNR. More undesired factors can be corrected through PCA-
correction if necessary. Overall, the PCA-correction 
incorporated pipeline is designed to work with existing CNV 
detecting algorithms to reduce the false positives in 
detection and enhance the validity of resulting CNV calls. 

REFERENCES 
[1] J. S. Beckmann, et al., "Copy number variants and genetic traits: 

closer to the resolution of phenotypic to genotypic variability," Nat 
Rev Genet, Vol. 8, pp. 639-646, 2007. 

[2] A. Shlien, et al., "Excessive genomic DNA copy number variation in 
the Li-Fraumeni cancer predisposition syndrome," P Natl Acad Sci 
USA, Vol. 105, pp. 11264-11269, 2008. 

[3] E. Gonzalez, et al., "The influence of CCL3L1 gene-containing 
segmental duplications on HIV-1/AIDS susceptibility," Science, Vol. 
307, pp. 1434-1440, 2005. 

[4] J. Sebat, et al., "Strong association of de novo copy number 
mutations with autism," Science, Vol. 316, pp. 445-449, 2007. 

[5] L. A. Weiss, et al., "Association between microdeletion and 
microduplication at 16p11.2 and autism," New Engl J Med, Vol. 358, 
pp. 667-675, 2008. 

[6] T. Walsh, et al., "Rare structural variants disrupt multiple genes in 
neurodevelopmental pathways in schizophrenia," Science, Vol. 320, 
pp. 539-543, 2008. 

[7] J. L. Stone, et al., "Rare chromosomal deletions and duplications 
increase risk of schizophrenia," Nature, Vol. 455, pp. 237-241, 2008. 

[8] J. R. Pollack, et al., "Genome-wide analysis of DNA copy-number 
changes using cDNA microarrays," Nat Genet, Vol. 23, pp. 41-46, 
1999. 

[9] R. Mei, et al., "Genome-wide detection of allelic imbalance using 
human SNPs and high-density DNA arrays," Genome Res, Vol. 10, 
pp. 1126-1137, 2000. 

[10] D. J. Schaid, et al., "Comparison of microsatellites versus single-
nucleotide polymorphisms in a genome linkage screen for prostate 
cancer-susceptibility loci," Am J Hum Genet, Vol. 75, pp. 948-965, 
2004. 

[11] N. P. Carter, "Methods and strategies for analyzing copy number 
variation using DNA microarrays," Nat Genet, Vol. 39, pp. S16-S21, 
2007. 

[12] L. Bernardini, et al., "High-resolution SNP arrays in mental 
retardation diagnostics: how much do we gain?," Eur J Hum Genet, 
Vol. 18, pp. 178-185, 2010. 

[13] S. W. Scherer, et al., "Challenges and standards in integrating 
surveys of structural variation," Nat Genet, Vol. 39, pp. S7-S15, 
2007. 

[14] K. Wang, et al., "PennCNV: An integrated hidden Markov model 
designed for high-resolution copy number variation detection in 
whole-genome SNP genotyping data," Genome Res, Vol. 17, pp. 
1665-1674, 2007. 

[15] S. J. Diskin, et al., "Adjustment of genomic waves in signal 
intensities from whole-genome SNP genotyping platforms," Nucleic 
Acids Res, Vol. 36, pp. e126, 2008. 

[16] A. B. Olshen, et al., "Circular binary segmentation for the analysis of 
array-based DNA copy number data," Biostatistics, Vol. 5, pp. 557-
572, 2004. 

[17] A. C. Need, et al., "A Genome-Wide Investigation of SNPs and 
CNVs in Schizophrenia," Plos Genet, Vol. 5, pp. e1000373, 2009. 

[18] M. Bucan, et al., "Genome-Wide Analyses of Exonic Copy Number 
Variants in a Family-Based Study Point to Novel Autism 
Susceptibility Genes," Plos Genet, Vol. 5, pp. e1000536, 2009. 

[19] Y. Nannya, et al., "A robust algorithm for copy number detection 
using high-density oligonucleotide single nucleotide polymorphism 
genotyping arrays," Cancer Res, Vol. 65, pp. 6071-6079, 2005. 

[20] Illumina, "Interpreting Infinium Assay Data for Whole-Genome 
Structural Variation," Technical Note: DNA Analysis. 

6978


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

