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 Abstract− In this study we discuss different types of texture 
features such as Fractal Dimension (FD) and Multifractional 
Brownian Motion (mBm) for estimating random structures and 
varying appearance of brain tissues and tumors in magnetic 
resonance images (MRI). We use different selection techniques 
including KullBack – Leibler Divergence (KLD) for ranking 
different texture and intensity features. We then exploit graph 
cut, self organizing maps (SOM) and expectation maximization 
(EM) techniques to fuse selected features for brain tumors 
segmentation in multimodality T1, T2, and FLAIR MRI. We 
use different similarity metrics to evaluate quality and 
robustness of these selected features for tumor segmentation in 
MRI for real pediatric patients. We also demonstrate a non-
patient-specific automated tumor prediction scheme by using 
improved AdaBoost classification based on these image 
features.  

I. INTRODUCTION 

Brain tissue and tumor segmentation in MR images has been 
an active research area. Extraction of good features is 
fundamental to successful image segmentation. Due to 
complex structures of different tissues such as the gray 
matter (GM), white matter (WM) and cerebrospinal fluid 
(CSF) in the MR brain images, extraction of useful features 
is a challenging task. Intensity is an important feature in 
segmenting tumor from other tissues in the brain. In Ref. [1], 
the authors use intensity and a conventional fuzzy c-means 
clustering algorithm for segmentation of CSF, GM and WM 
in MR images. An unsupervised MR image segmentation 
method based on self organizing maps (SOM) is proposed in 
[2]. However, using intensity alone for segmentation has 
proved to be insufficient. Fractal Dimension (FD) is a useful 
tool to characterize the textured images and surface 
roughness [3]. In several of our previous works [4, 5, 11-14, 
16, 17], we demonstrated the effectiveness of fractal features 
in characterizing brain tumor tissue. Furthermore, we 
effectively analyzed the irregular texture variations of 
tumors in MRI using multifractal Brownian motion (mBm) 
for robust brain tumor segmentation [5]. On the other hand, 
researchers have used feature selection in many applications 
such as medical imaging, data mining and lexical works [6-
7]. The authors in Ref. [8] develop a novel algorithm for 
normalizing the intensities of an image to best match those 
of a model distribution. In Ref. [9], the authors perform 
KLD across image modalities, including structural MRI, 
functional MRI and EEG data for fusion. The authors 
discuss a new feature selection technique based on KLD 
between two-class conditional densities functions 
approximated by finite mixture of parameterized densities in  

 

[10]. In this work, we show comparative efficacy of different 
multiresolution texture models to segment brain tumors in 
pediatric T1, T2, and FLAIR MRI respectively. We further 
show results of feature fusion for generating a patient 
independent classifier for tumor detection and prediction. 

II. BACKGROUND REVIEW 

In this section, we first review relevant background for 
feature extraction using fractal and multifractal texture 
methods. In our previous works [11-13], we discuss the 
usefulness of intensity, FD and mBm wavelet fractal texture 
features for tumor segmentation. In this work, we explore 
effectiveness of three different feature fusion and 
segmentation techniques such as EM, SOM and graph cut 
respectively [14].  

A.  Fractal Dimension (FD) texture feature extraction 
The concept of fractal is first proposed by Mandelbrot [15] 
to describe the geometry of the objects in nature. The FD is a 
real number that characterizes the fractalness (texture) of the 
objects. We investigate effectiveness of three different FD 
computation methods for brain tumor segmentation in MRI 
[11]. In a prior work [16], we demonstrate that piecewise-
triangular-prism-surface-area (PTPSA) method offers the 
most reliable FD values and resulting tumor segmentation. 

B. Multifractional Brownian Motion (mBm) texture 
feature extraction 

We successfully investigated mBm-based texture model for 
brain tumor segmentation in MRI [6]. The mBm is defined 
as,  

          )()( )( txaatx tH=                 (1)                          

where x(t) is an mBm process, H(t) is the time varying 
scaling (or Holder) exponent and a is the scaling factor. 
After a sequence of mathematical derivation, For 2-D mBm 

model, let )(
→
uz represent a 2D mBm process, where 

→
u denotes the vector position (ux, uy) of a point in the 

process. We can approximate H (
→
u  ) for a 2D mBm 

process as follows [6], 
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The Eqn. that links H (
→
u  ) with FD is given as,  

FD = E+1-H                                (3)                          
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where, E is  Euclidean Dimension of the space of fractal (E 
= 2 for 2D image) and H is the Hurst coefficient. 

C. Kullback – Leibler Divergence for Feature selection & 
Entropy for feature ranking 

The KullBack – Leibler Divergence (KLD) is a measure of 
difference between two probability distributions [10]. 
Therefore, KLD can be used for multivariate normal 
distributions, approximated for the class conditional 
distributions of the tumor and non-tumor regions in MR 
brain images. We exploit the idea of information theory such 
as mutual information and KLD for feature ranking and 
selection. The mutual information can also be understood as 
the expectation of the KLD of the univariate distribution p 
(x) of x from the conditional distribution p (x|c) of x given c.                                                        

D. Brain Tumor Segmentation  
We study three different segmentation techniques for 
comparison. For graph cut method [9], the image is 
considered a graph and nodes i and j are pixels. Note the 
edge weight Wij denotes a local measure of similarity 
between two pixels.  Let G = {V, E} where V stands for the 
node and E for edges. For EM algorithm, at each pixel in an 
image, we compute a d-dimensional feature vector that 
encapsulates intensity and texture information. EM 
algorithm assumes that a segment is chosen with a 
probability, and models the density associated with that 
segment as a Gaussian probability distribution function, with 
parameters (μ, σ), that depend on the chosen segment. This 
is known as a Gaussian mixture model. The EM tool yields 
the cluster mean and covariance, for a user-defined number 
of clusters and number of iterations.  Finally, self-organizing 
maps (SOM) neural network can be used as segmentation 
tools. The SOM map consists of a regular grid unit which 
learns to represent the statistical data described by model 
vectors nRx ∈ , where Rn represents n dimension real 
space. Each map unit i contains a vector mi )( n

i Rm ∈  that 
is used to represent the data [14]. 

E. Similarity Coefficient (SC) for segmentation quality 
and robustness identification 

For estimating the robustness of segmentation we consider 
different similarity measures such as Jaccard, Dice, Sokal & 
Sneath (SS) and Russel and Rao (RR) [17]. We quantify 
segmentation robustness by measuring the overlap of tumor 
using different similarity metrics such as Jaccard (p/p+q), 
Dice (2p/2p+q), SS (p/p+2r) and RR (p/p+q+r), where p is 
the area of tumor region in MRI (tumors segmented by 
radiologist and used as ground truth), q is the area of the 
tumor region segmented using EM algorithm and r is the 
non-tumor region.  

III. METHOD 

The first step includes the preprocessing stage that 
minimizes intensity and inhomogeneity bias using a 
normalization algorithm. After preprocessing step, we 
extract four features such as intensity, shape, FD using 

PTPSA algorithm, and mBm using fractal-wavelet algorithm 
in multimodality MR images. We use both KLD and the 
entropy measures for feature ranking and selection. The 
features selected are then used for the segmentation of the 
tumor region in MRI using EM. Finally, ee propose a 
modified version of the AdaBoost to improve tumor 
classification rate. The first modification is the weights of 
the component classifier are calculated considering three 
factors such as (i) how many samples are correctly 
classified, (ii) how confidently the samples are classified 
with the current ensembles of classifiers and (iii) how 
difficult or informative the correctly classified samples are. 
The other proposed modification is we update the weights 
(probability of being selected in the next cycle) for each 
samples considering how confidently the samples are 
classified/misclassified in the current cycle. This 
modification helps the component   classifier to concentrate 
more on difficult –to-classify patterns during prediction as 
well as training. 

We propose a few novel modifications in Adaboost as 
shown in Fig. 1. The first modification in step 3(d) obtains 
the weights of the component classifiers. These weights are 
calculated considering three factors such as (i) how many 
samples are correctly classified, (ii) how confidently the 
samples are classified with the current ensemble of 
classifiers, and (iii) how difficult or informative the correctly 
classified samples are. The other proposed modification is 
shown in step 3(e). We update the weights (probability of 
being selected in the next cycle) for each training samples 
considering how confidently the samples are 
classified/misclassified in the current cycle. This 
modification helps the component classifier to concentrate 
more on difficult-to-classify patterns during prediction as 
well as in training. The prediction decision on a new sample 
x can be based on the weighted vote of the component 

classifiers, 
∑
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, where h(x) is class 
decision from each component classifiers and H(x) is the 
final decision. 
 
n:  number of samples (patterns) in the training set 
x :  training samples, [x1, x2, …, xn] 
y : class labels of the training samples, [y1, y2, …, yn] 

kmax: maximum number of classifier 
Wk: weight distribution of the samples at iteration k, [Wk(1), 
Wk(2), …,  Wk(n)] 

1. initialize weights, W1(i) = 1/n, i = 1, …, n 
2. set k = 1 
3. while k < kmax do 

a. increment, k = k +1 
b. train component classifier Ck using training set 
sampled from x according to Wk 
c. draw a test set of size n from x according to 

Wk and computer the posterior probabilities  
)|( ii xyprob  
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d. calculate the classifier weight, 
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4. return Ck and the corresponding weights αk 
5. end 

 
Fig. 1   Proposed modified AdaBoost algorithm 

IV. RESULTS & DISCUSSION 

A.   Feature Extraction and Selection  
We first divide the images into 8 X 8 sub – images and 
obtain the corresponding features using PTPSA and mBm 
set algorithms respectively. We then obtain the normalized 
mean value of the FD, mBm, intensity and shape features for 
both tumor and non-tumor regions for each MRI 
slice.Finally, we obtain KLD plots for all the three MR 
image modalities per patient. Figure 2 shows results in T1, 
T2 and FLAIR modalities for patient #8 as an example. 
Figures 2(a) and (c) show that as the entire tumor cluster is 
located in the mBm plane. Thus, mBm can be used to 
effectively discriminate between the PF tumors and non- 
tumor tissues in T1and FLAIR MRI. Figures 2(b) shows that 
intensity is necessary to isolate tumor cluster in T2. This 
similar trend is noted for all the ten patients in our database. 
Fig.2 clearly provides more effective separation of tumor 
features. 
                                                                                

 

 

 
 
 

(a)                                                                
(b) 

            
 

  

(c)    

 

Fig. 2  KLD results showing the separability of features for (a) T1 modality; 
(b) T2 modality; (c) FLAIR modality for patient#8.  Encircled dots show 
tumors and the rest shows non –tumor. 

We compute the entropy values for all ten patients. Our 
entropy values for the feature matches with the KLD plots. 

B.  PF Tumor segmentation using selected MRI features 
For effective comparison and evaluation, we employ three 
different tumor segmentation techniques such as SOM, 
graph cut and EM. Figure 3 shows tumor location in 
different modalities. Figure 4 shows an example for patient 
#8 in three MRI modalities.  

 

 

 

 
 (a)                                  (b)                      (c) 

Fig. 3 An example MRI slice for (a) T1 modality; (b) T2 modality; 
(c)FLAIR modality for patient #8. Tumors have been shown using 
boundary. 
 

 
                (a)                                   (b)                                     (c)                                               
Fig. 4  Tumor segmentation using EM for patient #8 in (a) T1 image using 
mBm, (b) T2 image using intensity, (c) FLAIR image using mBm, 
respectively. Tumor segments are circled.      
                                                                                             

C.  PF Tumor segmentation efficacy  
Figure 5 shows radar plots for four similarity metrics such as 
Jaccard, Dice, (SS), and (RR) in T1, T2, and FLAIR 
modalities for all ten patients, respectively. In each subplot, 
for a specific metric the values in y-axis represent the 
overlap coefficient while the axis at each clock location 
represents the patient number. In Fig. 5(a) and (d), both the 
overall Jaccard and RR overlap is about 60% for all patients. 
We observe that the Dice overlap in Fig. 8(b) is above 80% 
for all patients. In Fig. 5(c), SS overlap for nine patients is 
above 60% except for a dip at 47% for patient #1 for all 
modalities.  

                   
(a)                       (b) 

 
                 (c )                                          (d) 
Fig. 5  plot of similarity metrics for ten patients in three modalities for (a) 
Jaccard (b) Dice (c) sneath and Sokel (d) Russel and Rao (RR) 
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D. Patient independent classifier for PF tumor prediction 

Figure 6(a) shows the PC projected feature plots. Note for all 
three T1, T2, and FLAIR MRI modalities, combination of 
the three features representing tumor samples are clustered 
into compact regions, while the non-tumor samples are 
spread all over. Since we are interested to develop a patient-
independent prediction classifier for PF tumor that combines 
information from all three MRI modalities, all three features 
are combined from all three MRI modalities. Figure 5(b) 
shows such plot wherein all nine features are combined and 
projected onto their first two PCs. We note that the tumor 
samples are further clustered while the non-tumor regions 
are increasingly scattered. Such compact cluster of the tumor 
features is expected to yield better tumor classifier with high 
TPF while sacrificing less FPF. 

 
                                            (a) 

             (b) 
Fig. 6  (a) Projection of 3 features (intensity, PTPSA, MuliFD) onto their 
first 2 principal components; and (b) Projection of all 9 features (intensity, 
PTPSA and MuliFD from all 3 MRI modalities) onto their first 2 principal 
components  

 

Fig. 7  The ROC when data from all six patients are combined together for 
different classification scheme. 

Figure 7, however, shows the most difficult case wherein 
data from all patients are combined together in order to 
obtain a patient independent PF tumor prediction scheme. 
The ROC plot shows that the modified AdaBoost can 
achieve TPF = 1 at around FPF = 0.25, while the regular 
AdaBoost achieve TPF = 1 at around FPF = 0.35. This clear 
performance gain for the modified AdaBoost verifies the 
efficacy of the patient-independent PF tumor detection and 
prediction scheme. 
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