
  

  

Abstract—3D functional neuroimaging is used in the 
diagnosis and management of neurological disorders. The 
efficient management and analysis of these large imaging 
datasets has prompted research in the field of content-based 
image retrieval. In this context, our generalized regional 
disorder-sensitive-weighting (DSW) scheme gives greater 
weight to brain regions affected by the diseases than regions 
that are relatively spared. We used two DSW matrices; one 
matrix is based on the occurrence maps that highlight 
abnormal functional regions; the other is based on the regional 
Fisher discriminant ratio. Our results suggest that our DSW 
matrices enhance neuroimaging data retrieval and provide a 
flexible weighting solution for the clinical analysis of different 
types of neurological disorders.  

I. INTRODUCTION 
UNCTIONAL neuroimaging, such as positron emission 
tomography (PET), plays an important role in the 

diagnosis and management of a variety of neurological 
disorders. Instrumentation advances have led to the 
introduction of PET-CT and, very recently, PET-MR 
scanners into clinical practice and with these advances there 
has been a marked increase in the size of the neuroimaging 
datasets. The efficient management and analysis of these 
large imaging datasets has prompted research in the field of 
content-based image retrieval (CBIR) with the anticipation 
of applications in computer aided diagnosis (CAD), 
education and clinical research.   

There are a number of recent reports on neuroimaging 
data retrieval but accurate CBIR remains a challenging area 
[1-5]. Previous reports can be separated by the major 
features that the investigators used. Ramirez et al used 
statistical-based features [1-2]. Their studies focused on 
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FDG ([18F]2-fluoro-deoxy-glucose) PET in distinguishing 
Alzheimer’s disease (AD) cases from normal controls using 
the support vector machine (SVM) for early AD detection 
and Gaussian mixture models (GMM) based multivariate 
approach for brain image classification [1, 2]. Wong et al. 
and Kim et al. used physiological features [3, 4]. Wong et al. 
built a neuro-informatics database system for temporal lobe 
epilepsy studies and used glucose consumption as the 
physiological feature [3]. Kim et al. proposed a retrieval 
system for dynamic PET brain images using volume of 
interest (VOI) based tissue time activity curves (TTAC) [4]. 
Batty et al. [5] designed a prototype system for semantic 
retrieval of brain PET images and they extracted visual 
texture features from a fixed region of interest (ROI) by 
Gabor filters [5]. Our group recently proposed a 3D retrieval 
approach based on physiological and visual features, i.e. 
cerebral metabolic rate of glucose consumption (CMRGlc) 
based parameters combined with texture features extracted 
by 3D gray level co-occurrence matrices (GLCM) algorithm 
[6].  Rather than use the whole brain data or fixed ROI-based 
data for all neurological disorders, we designed a set of 
disorder-oriented-masks (DOMs), each of which 
corresponded to a particular neurological disorder and 
included functional brain regions specific to that disorder’s 
degenerative pattern. The DOMs reduced the retrieval of 
non-specific data from irrelevant regions.   

The construction of DOMs, however, relied heavily on 
clinical expertise and an understanding of the underlying 
neuropathology [6]. In addition, the DOMs could not take 
into account the variability of abnormality in the affected 
regions due to progression of neurological disorders. In 
other words, DOMs treated all the disorder related regions 
equally. To understand this, we could consider the DOMs as 
a special binary weighting matrix, having 0 and 1 values 
only. If abnormalites in a particular region were associated 
with a particular neurological disease, then its weight was 
set to 1, otherwise its weight was set to 0.  

Our aim with this work was to develop an objective and 
flexible weighting solution for different brain functional 
regions that was not dependent on clinical expertise for 
selecting the disorder associated regions and which could 
reflect the functional regions’ sensitivity to the disorder’s 
pathological changes quantitatively. Therefore, we proposed 
a generalized regional disorder-sensitive-weighting (DSW) 
scheme with two generalized DSW matrices for region-wise 
texture feature extraction. The proposed generalized DSW 
matrix based retrieval approach were compared to the DOM 
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based and whole brain based retrieval approaches, and the 
validity of the proposed approach was tested on 141 clinical 
neurological FDG-PET studies.  

II. METHODS 

A. Functional Neuroimaging Data Pre-processing 
The static FDG-PET images were acquired on a CTI 

ECAT 951R whole body PET scanner and the CMRGlc 
parameters were derived from these images with the 
autoradiographic (ARG) algorithm [7]. The CMRGlc 
images were then spatially normalized to the Montreal 
Neurological Institute (MNI) template by the SPM2 package 
[8]. The MNI-based Tzourio-Mazoyer atlas was used to 
define 116 functional regions. For simplicity, we used R = 
{R1, R2 , … , Rn}  instead of the full functional region names 
to represent  the entire collection of brain functional regions 
(R), where n in this study was 116, as defined by the 
Tzourio-Mazoyer atlas. 

B. Occurrence Map based DSW Matrix  
To describe the occurrences of the abnormal voxels 

appearing in a functional region, inspired by the probability 
map proposed by Hammers et al. [9], we designed an 
occurrence map (o-map) for constructing the DSW matrix. 
The o-map was constructed by summing the t-maps [6] of all 
cases diagnosed with a specific disorder. The t-maps were 
generated by comparison against all the normal controls 
used in this study (see section E). Setting a threshold 
(p-value < 0.05), t-map could capture the lesion areas within 
a 95% confidence interval. The voxel value in an o-map 
reflected the presence or absence of the abnormality. If the 
voxel value is 0, that means no abnormality was captured by 
any t-map for this voxel, therefore, that voxel is normal. If 
the voxel value is greater than 0, then at least one t-map has 
captured that voxel as abnormal. The fraction of the 
abnormal voxels, i.e.: voxels with values greater than 0, to 
the total number of voxels in a region showed the 
discriminant power of that region. 

The ratio (ri) of the number of abnormal voxels in region 
Ri to the total number of voxels in Ri reflected the 
probability of Ri being abnormal for that disorder. We 
computed ri for every Ri, and then derived the weight for Ri 
as in (1): 
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Combining all the wi, we generated the DSW matrix as 
WDISORDER = {w1 , w2 , … , wn}. For each of the investigated 
disorders, we derived an o-map based DSW matrix.  

C. Fisher Discriminant Ratio based DSW Matrix  
For any functional region, we assumed that its intensity 

distribution for a disorder group could reflect the region’s 
sensitive degree to that disorder’s pathological changes 
when compared to same region’s intensity distribution for 
the normal controls. We also assumed that such regional 

disorder sensitive degree to one disorder’s pathological 
changes could be different from that for another. We thus 
designed another DSW matrix based on the Fisher 
discriminant ratios (FDR) [1] which could evaluate of the 
distribution difference between a disorder group and the 
normal control group. For each of the investigated disorders, 
we let µi_DISORDER and σi_DISORDER denote the mean and 
standard deviation of the voxel values in Ri , and µi_NC and 
σi_NC for the normal controls, respectively. We then 
computed the FDRi as in (2) to quantify the discriminant 
power of Ri for distinguishing a case in a disorder group 
from the normal controls: 
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We calculated the FDRi for each Ri and then define the 
weight for each Ri as in (3): 

1
1

, 1ni
i in

i

FDRw w
FDR

= =∑
∑

.           (3) 

As with the o-map based DSW matrix, we combined all 
the wi to construct the FDR-based DSW matrix. 

FDR and o-map based DSW matrices both try to identify 
abnormal regions using certain ratios instead of values with 
measurement units, but their weights were derived 
differently. An o-map based DSW matrix is based on the 
fraction of abnormal voxels (p <0.05) within a region. In 
contrast, FDR is based on the difference in grey level (voxel 
value) distribution of a region compared to the distribution 
in the corresponding region for the normal population.  Fig. 
1 shows examples of the o-map and the FDR-labeled atlas 
for frontotemporal dementia (FTD).  

 
D. Feature Extraction based on DSW Matrices 

The 3D Gray Level Co-occurrence Matrix (GLCM) 
algorithm [11] was used to capture the texture features. Fig.2 
shows the pseudo codes on how the features were extracted 
from individual regions and subsequently aggregated into 
one feature vector according to the DSW matrix.  

For each functional region, 39 co-occurrences matrices 
were extracted in 13 directions and 1, 3, 5 depths, 
respectively. A 14-dimensional Haralick feature vector was 
computed from each of the 39 extracted co-occurrences 
matrices. Then a single feature vector was derived by 
averaging the 39 feature vectors to represent the region, i.e.: 

      
       (a) O-map                            (b) FDR labeled atlas 

Fig. 1.  Volume rendering of the o-map and the FDR labeled atlas for FTD.  
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vi = { vi, 1 , vi, 2 , vi, 3 , …, vi, m }T, where m
For a whole brain image volume c
functional regions, the feature vector mat
follows: V = {v1 , v2 , v3 , …, vn}, n =
computed the dot product, Q, of the featur
and the DSW matrix, WDISORDER_MATRIX, a

 

Q = VT• WDISORDER_MATRIX,      

where Q was the final representation of th
the same dimension as vi, and WDIS
specified by the disorder name and DSW 

 
SET  distance depth (depth) = 1, 3, 5 
SET  replacement direction (direction) = 13 ang
SET  feature vector matrix (V) = empty  
SET  DSW matrix type (type) = ‘o-map’ or ‘FDR’
SET  disorder name (disorder) = ‘AD’, ‘FTD’, ‘DL
FOR each region in the 3D CMRGlc image 
  FOR each depth in each direction  
   EXTRACT  a co-occurrence (glcm) 
   COMPUTE a Haralick feature vector (har
   ADD   haralick to a temporary regional f

  END FOR 
  COMPUTE a regional feature (vi) as the average 

  ADD   vi to V 
END FOR 
READ   DSW matrix (W) specified by type a
COMPUTE Q as dot product of V and W 
RETURN  Q 

 
Fig. 2.  Pseudo codes for DSR weighting matrix ba

E. Dataset and Evaluation 
We tested the proposed generalize

scheme on a dataset which was co
neurological FDG-PET studies acquired
951R whole body PET scanner, at the D
and Nuclear Medicine, Royal Prince 
Sydney. The dataset contained 38 Alzheim
cases, 6 Diffuse Lewy body disease (D
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AD/DLBD (suspicious AD or DLBD) ca
18 normal cases and 31 other dementia ca

The retrieval was conducted by the leav
on the whole dataset using query by exam
similarity was calculated by Euclidean
normalized feature space [6]. Taking into
overlap of the degenerative patterns of d
calculated the retrieval precision, we set t
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AD/DLBD cases, whose relevance scor
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compared the proposed DSW scheme t
based retrieval using the average precision
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III. RESULT
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the special binary weighting matrix, DOM, we found that 
the generalized DSW matrices achieved higher average 
precision than DOM for most disorders. For ‘DLBD’ and 
‘FTD’ cases, the O-MAP-DSW reached the highest 
precision; while for ‘AD/DLBD’ cases, the FDR-DSW had 
the best performance. The only exception was found in AD 
cases. The retrieval of AD cases by using DOM was 
unexpectedly better than the generalized DSW matrices. Fig. 
4 shows the average precision of the top 3 retrieval results. 
Similar findings were discovered when we compared Fig. 4 
to Fig. 3.  

IV. DISCUSSION 
For all the investigated disorders, the DOM based 

retrieval achieved better results than the whole brain based 
retrieval. This was due to DOMs’ superiority in capturing 
the pathological information, for the DOMs were 
constructed based on clinical expertise. However, DOM was 
not the optimum way for exploiting the pathological 
information contained in the functional regions, for it was 
not able to reflect the sensitivity level to a disorder’s 
pathological changes in different functional regions. The 
generalized regional DSW scheme, on the other hand, could 
capture such senstivity information and measure the 
sensitive degree of different functional regions 
quantitatively. The generalized DSW matrices did not 
utterly retain or discard the functional regions like the 
DOMs, but assigned a weight to each functional region 
according to the information inherent in the data. In addition, 
the generalized DSW scheme combined the multilevel 
information, i.e.: the voxel-level information captured by the 
GLCM algorithm and the region-level information in the 
weighting matrices. Therefore, our proposed generalized 
DSW matrices performed better than the DOMs for most of 
the disorders. 

One thing we should note was that the retrieval of AD 
cases using DOM was much better than using the 
generalized DSW matrices. This finding could be explained 
by AD’s characteristics. AD was a special subtype of 
dementia, whose degenerative pattern spread out many 
functional regions of the brain. It is very difficult to find the 
differences between AD cases and normal controls at the 
early stage, or even at the mild stage. The dataset used in this 
study mixed the AD patients at different stages. As a result, 
the AD cases at early stage contributed little to the 
construction of o-map and diluted the significance of FDR, 
and they are unlikely to be retrieved by the search of a late 
AD study, and vice versa. In addition, some normal controls 
also made the biased retrieval of AD cases, because they 
exhibited a whole brain degenerative pattern, which was 
similar to some AD cases. Such normal cases were quite rare, 
only two in our database. By contrast, the DOM was based 
on clinical expertise and only focused on specific pattern of 
defect for late AD studies, hence would not be affected by 
these negative factors. 

V. CONCLUSIONS AND FUTURE WORK 
In this study, we presented a generalized regional DSW 

scheme for 3D neuroimaging retrieval. This generalized 
functional-region-wise DSW scheme was evaluated using 
two weighting matrices. The first weighting matrix was 
based on the o-map and the other was based on the 
functional-regional-wise FDR. Both of the two generalized 
DSW matrices could enhance the retrieval of neurological 
images for all disorders investigated, and they also 
demonstrated the superiority over DOMs for most of the 
disorders. In conclusion, our proposed generalized regional 
DSW scheme provides a flexible weighting solution for the 
neurological disorder analysis, and unlike DOM, it does not 
require clinical knowledge of the disease pathology. 

For the future work, we would extend this study by: 
1) Improving the retrieval of AD cases and other 

progressive neurological disorders. We suggest that the 
patients should be grouped by their progression stage. As we 
do so, we could also extract useful information on 
distinguishing future patients at different stages.  

2) Investigating more neurological disorders using our 
generalized functional-region-wise DSW scheme, e.g.:  
epilepsy and many other subtypes of dementia. 

REFERENCES 
[1] J. Ramírez, J. M. Górriz, M. López, et al. "Early detection of the 

Alzheimer disease combining feature selection and kernel machines," 
Advances in Neuro-Information Proc., Lecture Notes in Comp. Sci., 
2009, pp. 410-417: Springer Berlin / Heidelberg. 

[2] F. Segovia, J. M. Gorriz, J. Ramirez, et al., “Classification of 
functional brain images using a GMM-based multi-variate approach,” 
Neuroscience Letters, vol. 474, no. 1, 2010, pp. 58-62. 

[3] S.T.C. Wong, K.S. Hoo, X. Cao, et al., “A neuroinformatics database 
system for disease-oriented neuroimaging research,” Academic 
Radiology, vol. 11, no. 3, 2004, pp. 345-358. 

[4] J. Kim, W. Cai, D. Feng, et al., “A new way for multi- dimensional 
medical data management: volume of interest (VOI)- based retrieval 
of medical images with visual and functional features,” IEEE Trans. 
on Info. Tech. in Biomed. vol. 10, no. 3, 2006, pp.598-607. 

[5] S. Batty, J. Clark, T. Fryer, et al., “Prototype system for semantic 
retrieval of neurological PET images,” Proc. 2nd Int. Conf. on Med. 
Imaging and Info. (MIMI 2007), Beijing, Aug 14-16, 2007, LNCS 
4987, pp. 179-188. 

[6] S. Liu, W. Cai, L. Wen, et al., "A robust volumetric feature extraction 
approach for 3D neuroimaging retrieval." Proc. Eng. in Med. and Bio. 
Society (EMBC), 2010, pp. 5657-5660. 

[7] G.D. Hutchins, J.E. Holden, R.A. Koeppe, et al., “Alternative 
approach to single-scan estimation of cerebral glucose metabolic rate 
using glucose analogs with particular application to ischemia,” J. of 
Cerebral Blood Flow and Metab., vol. 4, 1984,  pp. 35-40. 

[8] R. S. J. Frackowiak, K. J. Friston, C. D. Frith, et al., Human Brain 
Function. Amsterdam; Boston: Elsevier Academic Press, 2004. 

[9] A. Hammers, R. Allom, M.J. Koepp, et al., “Three-dimensional 
maximum probability atlas of the human brain, with particular 
reference to the temporal lobe,” Human Brain Mapping, vol. 19, is. 4, 
2003, pp. 224-247. 

[10] W. Cai, S. Liu, L. Wen, et al., "3D neurological image retrieval with 
localized pathology-centric CMRGlc patterns." Proc. 17th IEEE Int. 
Conf. on Image Proc. (ICIP), 2010, pp. 3201-3204. 

[11] S. Kurani, D.H. Xu, J. Furst, et al., “Co-occurrence matrices for 
volumetric data,” Proc. 7th Int. Conf. on Computer Graphics and 
Imagine (CGIM), 2004, Hawaii. 

7012


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

