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Abstract—Electroencephalography (EEG) and magneto-
encephalography (MEG) are both currently used to reconstruct 
brain activity. The performance of inverse source 
reconstructions is dependent on the modality of signals in use 
as well as inverse techniques. Here we used a recently proposed 
sparse source imaging technique, i.e., the variation-based 
sparse cortical current density (VB-SCCD) algorithm to 
compare the use of EEG or MEG data in reconstructing 
extended cortical sources. We conducted Monte Carlo 
simulations as comparison to two other widely used source 
imaging techniques. The VB-SCCD technique was further 
evaluated in experimental EEG and MEG data. Our present 
results indicate that EEG and MEG have similar 
reconstruction performance as indicated by a metric, the area 
under the receiver operating characteristic curve (AUC). 
Furthermore, EEG and MEG have different advantages and 
limitations in revealing different aspects of features of extended 
cortical sources, which are complimentary to each other. A 
simultaneous EEG and MEG analysis framework is thus 
promising to produce much improved source reconstructions. 

I. INTRODUCTION 
LECTROENCEPHALOGRAPHY (EEG) and magneto-

encephalography (MEG) provide excellent temporal 
resolutions for studying neuronal events. Meanwhile, both 
EEG and MEG are currently used to reconstruct brain 
activity to improve the identification and localization of 
underlying cortical neural sources. This is achieved by the 
so-called electromagnetic source imaging (ESI) techniques 
[1] that non-invasively reconstruct cortical electrical activity 
from external surface potentials and/or magnetic fields, 
known as the EEG/MEG ‘inverse problem’. While EEG and 
MEG signals reflect common neural electrical events, there 
is great interest in the assessment of the relative accuracy of 
EEG and MEG in reconstructing neural sources, which 
depends on the modality of signals as well as many other 
factors, including the accuracy of forward modeling and the 
performance of inverse reconstruction algorithms. 

There have been many debates over the accuracy of EEG 
or MEG based source localization and/or reconstruction 
approaches. Due to its biophysical property, MEG is mainly 
limited by less sensitivity to radially oriented cortical 
sources [2]. Since deep brain sources are nearly radial, the 
sensitivity of MEG to deep sources drops rapidly [3]. On the 
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other hand, EEG reflects current sources of all orientations. 
However, when field gradient distributions are concerned, 
the electrical field gradient can be smoothed by low skull 
conductivity, which makes EEG signals more vulnerable to 
noises than MEG signals. Furthermore, the electrical field 
gradient reaches the highest along the current dipole moment 
whereas the magnetic field has the highest gradient across 
the current dipole moment.  

Previous studies [4], [5] have reported better localization 
accuracy using MEG than EEG. Other studies [6], however, 
indicated comparable performance of EEG and MEG. These 
conflicting data suggested various factors influencing the 
performance of EEG and MEG. Generally, in experimental 
studies, it is difficult to distinguish errors occurred during 
forward head modeling, errors caused by inverse 
reconstructions, and errors due to inherent differences 
between EEG and MEG signals. Instead, through the use of 
modeling studies, it is possible to examine the relative 
accuracy of EEG and MEG using the same forward solution 
to generate both synthetic external EEG/MEG measurements 
and inspect resulted inverse solutions. 

In the present study, we conducted the Monte Carlo 
simulation study to compare the accuracy of EEG and MEG 
signals in reconstructing extended cortical sources using 
cortical current density (i.e., CCD) source model. We aimed 
to investigate the accuracy of EEG and MEG using a newly 
developed sparse source imaging technique, i.e., the 
variation-based sparse cortical current density (VB-SCCD) 
algorithm [7]. We further compared the performance of the 
sparse source imaging algorithm based on EEG/MEG data 
as opposed to other two L2-norm based inverse algorithms, 
i.e., weighted minimum norm estimate (wMNE) [8] and 
cortical low resolution electromagnetic tomography 
(cLORETA) [9]. In addition to simulations, experimental 
EEG and MEG data from a face recognition task [10] were 
used to further compare the accuracy of EEG and MEG in 
reconstructing realistic cortical sources. 

II. METHOD 

A. wMNE, cLORETA, and VB-SCCD 
Assume the vector s  represents N elemental dipole 

moments defined on the CCD model. Vectors v  and b  
denote potentials and magnetic fields measured at vM  EEG 
electrodes and bM  MEG sensors, respectively. 

( )
Nvvvv aaaA ,2,1,

,,,=  is the gain matrix ( )NM v ×  and each 
column specifies potentials on electrodes from a unity 
dipole, while ( )

Nbbbb aaaA ,2,1,
,,,=  is the corresponding gain 
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matrix ( )NM b ×  for magnetic fields. vn  and bn  denote 
background and measurement noises in EEG and MEG, 
respectively. Then the forward problem can be expressed in 
the following vector notation: 

            vv nsAv +=  and bb nsAb +=          (1) 
In the following formulation of inverse problems, symbols 
for electrical potentials and magnetic fields are not 
distinguished for the simplicity. We use φ  to denote 
observations resulted from either electrical potentials or 
magnetic fields and use A  to denote the corresponding gain 
matrix from either signal modality. The regularization 
scheme used in the wMNE inverse algorithm can be stated 
as the following optimization problem. 

βφ <−
22

min sAtosubjectsW   (2) 

where β  is the regularization parameter. W  is an NN ×  
diagonal matrix and its diagonal element is calculated by 

i
T
iii AAW = , which is used to compensate the bias due to 

the source depth [8].  
The optimization problem in the cLORETA algorithm [9] 

can be stated as 
βφ <−

22
min sAtosubjectsLW  (3) 

where L  is the two-dimensional discrete spatial Laplacian 
operator defined over the cortical surface. The penalty term 
here is to minimize the contribution from high spatial 
frequency components and, thus cLORETA usually provides 
smooth source reconstructions. 

The regularization schemed used in VB-SCCD algorithm 
is developed based on the theory of sparse source imaging 
[11]. The optimization problem proposed to be solved in 
VB-SCCD can be mathematically stated as 

βφ <−
21

min sAtosubjectsV   (4) 

where V  is a matrix operator to get the variation map of 
cortical current density distributions. The variation vector is 
thus defined as sV . The penalty function is designed to 
minimize the L1-norm of variation vector of solution, which 
is equivalent to maximize the sparseness in the variation 
domain. Each element in this variation vector represents a 
coefficient within the variation map over a triangular edge in 
the CCD model and its value indicates the current density 
difference between two triangular elements sharing the same 
edge (see [7] for details).  

Equations (2), (3), and (4) are solved by the second-order 
cone programming [12]. The regularization parameter β  in 
equations (2), (3), and (4) can be estimated by applying the 
discrepancy principle [13]. We choose it to be high enough 
so that the probability of β≥

2
n , where sAn −= φ , is 

small. When noise is Gaussian white, ( ) 2

2
2/1 nσ , where 2σ  

denotes the variance, has the 
mχ  distribution with M degrees 

of freedom, i.e. ( ) 22

2
2 ~/1 mn χσ . In practice, the upper bound 

of 
2

n , i.e. β , is selected such that the confidence interval 

[ ]β,0  integrates to a 0.99 probability [11]. In conditions 
with real noise, other noise models can be similarly utilized 

if the distributions of noise are known or can be estimated. 

B. Monte Carlo Simulation Protocol 
Since the majority of EEG and MEG signals are generated 

by cortical pyramidal neurons [14], the cortical current 
density (CCD) source model [15] was used in the present 
study. A current dipole was used to model current source at 
each elemental triangle on the CCD model and its 
orientation was set in the normal direction of the triangle. 
The CCD model used in simulation was generated by the 
BrainSuite software [16], which segmented the interface 
between white matter and gray matter from a human head 
magnetic resonance imaging (MRI) data. The volume 
conduction was modeled by a three-shell boundary element 
model (BEM) with three major tissues (the scalp, skull, and 
brain) of different conductivity (0.33/Ω.m, 0.0165/Ω.m, and 
0.33/Ω.m, respectively) [17]. EEG electrode locations and 
MEG sensor locations and orientations were adapted from 
the realistic EEG and MEG systems. For EEG, 120 channels 
were selected from a realistic 128-electrodes EGI system 
(Electrical Geodesics, Inc., Eugene, OR) by removing face 
electrodes. For MEG, there were 151 MEG sensors from a 
151 channel CTF Omega system. 

Extended cortical sources were generated by selecting a 
seed triangle on the CCD model and gradually growing into 
patches by iteratively adding neighboring triangles. The 
dipole moment on each triangle was computed as the 
multiplication of the individual triangular area and the dipole 
moment density (assume 100 pAm/mm2). Single-source and 
two-source conditions were simulated and the locations of 
simulated sources were randomly selected (i.e., 200 
locations). The cortical extents of these sources were 
between 2 cm2 to 4 cm2. We used the metrics, i.e., the 
receiver operating characteristic (ROC) curve and the area 
under the ROC curve (AUC) from the detection theory (see 
[7] for details) to evaluate the performance of wMNE, 
cLORETA, and VB-SCCD. 

C. Experimental Data Protocol 
We also performed the analysis of EEG and MEG data 

from a face recognition task [10] from a subject. Details of 
the experimental paradigm as well as the full dataset can be 
found at www.fil.ion.ac.ik/spm/data/mmfaces.html. In this 
experiment, the subject made symmetry judgments on faces 
and scrambled faces, which were presented every 3.6 s and 
each stimulus lasted for 0.6 s. EEG data were acquired on a 
128-channel ActiveTwo system, sampled at 2,048 Hz, while 
MEG data were sampled at 625 Hz from a 151-channel CTF 
Omega system. Epochs were created from -200 ms to 600 
ms for both EEG and MEG and then averaged according to 
faces trials and scrambled faces trial to produce event-
related data. The subject's T1-weighted MRI was obtained 
from a 1.5T Siemens Sonata via an MDEFT sequence with 
voxels in 1x1x1 mm3 resolution, using a whole body coil for 
RF transmission and an 8-element phased array head coil for 
signal reception. The CCD source model and BEM volume 
conductor were built using the BrainSuite software. The 
geometry registration was performed among subject’s head 
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shape, EEG electrode locations, and MEG sensors using a 
surface-fitting algorithm [18].  

III. RESULTS 
Fig. 1 shows the AUC values for simulations from all 

different conditions. To compare the use of EEG and MEG 
data, sources estimations were based on EEG and MEG data 
computed via the same forward model. In the case of a 

single simulated 
source (Fig. 
1(a)), the median 
AUC values 
achieved by VB-
SCCD were 
0.8753 and 
0.8502 for the 
EEG and MEG 

data, 
respectively. 

Although on 
average EEG 
produces slightly 
higher AUC 
values than 
MEG, they are 
not statistically 
significant (p > 

0.05). The close performance of EEG and MEG data is also 
observed in the case of two-source conditions (Fig. 1(b)), 
while the AUC values of two-source data are lower than that 
of the single-source condition. To further evaluate the use of 
EEG/MEG data, their AUC values achieved by VB-SCCD 
were also compared as opposed to wMNE and cLORETA. 
For both wMNE and cLORETA, the difference in terms of 
AUC values between EEG data and MEG data is statistically 
significant (p < 0.05) for both single- and two-source 
conditions, while such a difference is more evident in 
wMNE. Furthermore, the performance of VB-SCCD in 
reconstructing extended cortical sources using either EEG or 
MEG data is significantly better than wMNE and cLORETA 
(all p <0.05). 

The factors contributing to an AUC metric include the 
error in identifying source locations and the error in 
estimating source extents. In the next step, we examined the 
representative examples of reconstructed sources from both 
EEG and MEG to see whether there are different reasons 
causing the decrease of AUC values using both types of 
signals. Fig. 2 shows the two examples with one having the 
best AUC value from EEG (Fig. 2(a)) and one having the 
best AUC value from MEG (Fig. 2(b)) using the VB-SCCD 
algorithm. Their corresponding MEG and EEG 
reconstruction results are also displayed. As illustrated in 
Fig. 2(a), when using EEG data two sources were correctly 
localized and their spatial extents were well reconstructed, 
resulting in the highest AUC value (i.e., 0.9781). In contrast, 
under the same simulation condition, one source was 
missing in MEG, which yielded a lower AUC value. In 

another case of two-
source simulation 
illustrated in Fig 2(b), 
the accuracy for 
localization and extent 
estimation are both high 
for the two sources, 
which leads to the 
highest AUC value (i.e., 
0.9901) using MEG 
data. On the contrary, in 
this case, while sources 
reconstructed using 
EEG data are localized 
to the correct places, 
their spatial extents are 
smeared, which results 
in decreased AUC 
value. These results 
suggest that low AUC 
values with EEG are 
usually caused by 
smeared source 
distributions, which 

contributes errors for the accurate estimation of spatial 
extents of sources. The low AUC values with MEG are more 
likely to be caused by missing sources, which contributes 
errors in terms of localization. Both errors are reflected in 
the AUC metric.   

We also compared the performance of VB-SCCD in 
experimental EEG and MEG data. Results are shown in Fig. 
3, which includes brain sources from face trials during both 
P100/M100 and N170/M170 components. Reconstructed 
sources from EEG and MEG are generally consistent with 
each other. 
Bilateral 
activity 
within the 
visual cortex 
can be 
observed at 
P100/M100 
using either 
EEG or 
MEG data. 
Fusiform 
activations 
during 
N170/M170 
appear 
unilaterally 
dominant 
using either EEG or MEG. Meanwhile, EEG results reveal 
some activity within the frontal cortex (e.g., 150 ms), which 
is also expected in face recognition [10]. Sources 
reconstructed from MEG seem much more localized 
compared with sources reconstructed from EEG (e.g., 120 
ms), which is consistent with our observation in simulations 
(Fig. 2). 

 
Figure 1 AUC metrics of Monte Carlo 
simulations (Whisker plots) for different 
signal modality (i.e., EEG and MEG), 
different methods (i.e., VB-SCCD, wMNE, 
and cLORTEA), and different number of 
sources (i.e., 1 (a) and 2 (b)). 

 
Figure 2 Visualization of two 
examples with the highest AUC 
values from EEG (a) and MEG (b), 
and their corresponding MEG and 
EEG results, obtained from VB-
SCCD.

 
Figure 3 Comparison between EEG and MEG 
using VB-SCCD in reconstructing sources 
behind P100/M100 and P170/M170. 
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IV. DISCUSSIONS 
In the present study, we conducted a Monte Carlo 

simulation study to compare the performance of EEG and 
MEG in reconstructing extended cortical sources using a 
newly developed sparse source imaging technique (i.e., VB-
SCCD) [7]. We also compared the performance of EEG and 
MEG in the same simulation protocol using other two 
widely reported L2-norm source imaging techniques (i.e. 
wMNE and cLORETA). From our simulation data, results 
indicate that EEG and MEG have similar performance in 
localizing extended cortical sources as well as reconstructing 
their spatial extents by the VB-SCCD inverse imaging 
technique, as evaluated by the metric AUC [19]. Such 
difference between EEG and MEG becomes large and 
statistically significant in other two techniques (i.e., wMNE 
and cLORETA), which suggests that the use of information 
in different inverse algorithms from EEG and MEG might 
varies. Our findings of the modality-dependent and 
algorithm-dependent performance in source reconstruction 
corroborate the controversial reports in literature [4]-[6] 
about the use of EEG and MEG. Thus the accuracy of EEG 
and MEG data for inverse source imaging depends on 
factors beyond signal characteristics, such as specific inverse 
methods used as well as forward models and signal-noise 
ratios (which are not investigated in the current study). 
Among the three techniques investigated in the present 
study, the VB-SCCD technique not only has the significantly 
better reconstruction accuracy for extended cortical sources 
than other two techniques, but also produces comparable 
results using EEG and MEG. 

By directly visualizing sources reconstructed by VB-
SCCD using EEG and MEG, it further reveals the 
complimentary features of EEG and MEG in reconstructing 
cortical sources. MEG tends to produce focused sources 
which are consistent with simulated sources in terms of 
spatial extent, while EEG tends to smear spatial distributions 
of sources (Fig. 2) which might be caused by the relatively 
low EEG field gradients as compared to MEG field gradients 
as discussed in the Introduction section. On the other hand, 
MEG tends to produce missing cortical sources (Fig. 2), 
which can be explained by its degraded sensitivity to radial 
sources [2]. The simultaneous use of both EEG and MEG 
that integrates their complementary features will be a 
promising option to resolve these problems [20]. 

We further evaluated the performance difference of EEG 
and MEG using VB-SCCD using experimental data from a 
face recognition task. The cortical sources reconstructed for 
visual response (i.e., P100/M100) and face recognition 
(P170/M170) indicate the same difference pattern between 
EEG and MEG as from simulations. MEG results missed the 
sources from frontal cortex, while EEG results show much 
smeared source distributions in both visual cortex and 
fusiform areas. 

In summary, the performance of EEG and MEG data in 
reconstructing extended cortical sources is shown to be 
dependent on the inverse techniques used. Furthermore, both 
EEG and MEG have different advantages and limitations in 

revealing different aspects of features of extended cortical 
sources. A simultaneous data analysis framework integrating 
both EEG and MEG data is expected to produce improved 
performance for cortical source reconstruction. 
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