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Abstract—Anatomically distributed areas are dynamically 
linked to form functional networks for processing and 
integrating the different modalities of information in the human 
brain. A part of such networks is considered to be realized with 
synchronization of neuronal activities, which can generate 
correlated neural oscillation at the same and/or different 
frequency bands. To investigate the networks with the 
synchronization, analysis of connectivity between not only same 
frequency oscillation  but also different frequency (i.e. cross- 
frequency) is needed. For source estimation with electro- 
encephalogram (EEG) or magneto-encephalogram (MEG) 
signals, a spatial filtering technique is recently applied as an 
alternative method for equivalent current dipole (ECD) 
estimation technique. Non-adaptive type of spatial filtering 
technique, such as the Standardized low-resolution brain 
electromagnetic tomography (sLORETA), is reported to 
discriminate correlated sources. However, it may lead to 
inaccurate results due to its low spatial resolution. In the present 
study, we proposed a new systematic approach for localizing the 
sources of correlated cross-frequency oscillations. The method 
we propose can overcome the limitation of the non-adaptive 
spatial filtering technique by proactively using identified 
information in sensor level analysis (e.g. cross-correlation map 
and correlation topography), which allow us to focus on target 
sources. The performance of our proposed method is evaluated 
with simulated EEG signals, and is compared with traditional 
method. 

I. INTRODUCTION 

OR processing and integrating the different modalities 
of information in the human brain, anatomically 

distributed areas are dynamically linked to form functional 
networks. A part of such networks is considered to be realized 
with the synchronization of neuronal activities, which can 
generate correlated neural oscillations at the same and/or 
different frequency bands, as found in previous studies:  e.g. 
correlated activities between alpha and gamma bands during 
perception and memory tasks [1], alpha/beta and gamma 
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bands during motor imagery tasks [2].  
Although one would be aware of the ill-posed inverse 

problem in estimating the source location of neural 
oscillations from the electro-encephalogram (EEG) or 
magneto- encephalogram (MEG), many methods for such 
estimation have been proposed, and applied to the 
experimental data, in previous studies. Here, we propose a 
new systematic approach for localizing the sources of 
correlated cross-frequency oscillations from the EEG signals. 
And the performance of our method is evaluated with using 
simulated EEG signals, and is compared with that of a 
traditional method. 

II. MATERIAL AND METHOD 

A. Technical Method 

The method we propose is based on the temporal 
correlation between a pair of the magnitude of a Fourier 
spectrum obtained for the two signals; and on extraction of a 
pair of the spectral signals that exhibit significant correlation 
with each other, to subsequently localize the signal sources. 

 
1) Definitions 

Recorded data of a reference EEG signal (or possibly, a 
signal of electromyography (EMG) or MEG) and of a test 
signal from the other EEG sensors are denoted as  )(tbref  and 

)(tbi  , respectively  (where Nci 1 ; Nc  is channel count 

of sensors). Each of these data are divided into sections by 
applying a sliding time window with overlap and Fourier 
spectra are computed for every section. Each of the sections is 
represented as )(tb jref   or )(tb ki  (where Nekj 1,   ; Ne  is 

the number of sections). The magnitude of a Fourier spectrum 
in each section is denoted as )( lref

j
ref f B , or )( m

k
i fB  (where 

fNml 1,   ;
fN  is the number of spectrum ). The 

Spearman's rank correlation coefficient between  these 
spectrum magnitude,  ),( mlrefi ff   is calculated by 

),( mlrefi ff   
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   where )(r denotes the rank and ))((,))(( milrefref frfr BB 
 

are averages of the rank, namely;  
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2) Sensor level analysis 

The sets of the correlation coefficient (i.e. ),( mli ff  

fNmlNci  1,;1|  ) can be visualized in the 

cross-spectral plots with respect to certain combinations of 
reference and test signals/sensors (as in Fig. 2A), or in the 
topographical maps with respect to certain combinations of 
frequencies (as in Fig. 2B, C). These visualizations enable 
one to select a frequency pair  mlref ff ,

  showing significant 

positive or negative correlation , and subsequently, to map 
topographically the correlation coefficient vector 

T
Nc ],,,[ 21  γ at this frequency pair . 

 
3) Source estimation 

In this step, source estimation is performed based on the 
sensor level analysis described above. The correlation 
topography is used for weighting the sensor signals to target 
the activities that show significant correlation with each 
other.  

For source estimation, spatial filtering technique is recently 
used as an alternative method for equivalent current dipole 
(ECD) estimation technique, however it has limitations. For 
instance, adaptive type of spatial filtering technique can not 
discriminate correlated sources, while non-adaptive type can 
not distinguish proximal sources due to its lower spatial 
resolution [3]. While considering the limitation of spatial 
filtering technique, we employ non-adaptive spatial filtering 
technique to achieve our purpose to localize correlated 
sources. 

A spatial filtering technique is generally defined as linear 
combination of time constant weight vector and recorded data 
described as  

)()(ˆ tt T
ii bws 

 

where 
)(ˆ tis is estimated source in time domain at i-th 

voxel set in the brain area,  
TNc

iiii www ],,,[ 21 w ;
k
iw is 

weight from k-th sensor to source at i-th voxel in the brain, 

and 
T

Nc tbtbtbt )](,),(),([)( 21 b indicate a column vector 
of recorded data [4]. Because this formula is linear operation, 
spatial filtering calculation can be performed in frequency 
domain, namely; 

)())(())(()(ˆ ftFTtFTf TTT
i BwbwbwS   

where )(FT  denotes Fourier transform (FT) operation and 
T

Nc ffff )](,),(),([)( 21 BBBB  , NcitbFTf ii 1)),(()( B  .
Consequently, frequency characteristic of sources can be 
directly estimated from FT of sensor signals. This means that 
if target frequency can be identified previously (i.e. sensor 
level analysis), higher signal to noise estimation can be 
achieved, because non-target activities in other frequency 

bands can be excluded. 
And to focus on target correlated sources, FT of recorded 

data are weighted by using vector ( cw  
T

Ncwcwcwc ],,,[ 21  ) , which is derived from the correlation 
coefficient vector , as below,  
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where )( fk
wB is weighted FT of recorded data of section 

Nek 1  and )( fkB  is FT of recorded data. 
Then, for source estimation, we employ the Standardized 

low-resolution brain electromagnetic tomography 
(sLORETA) as non-adaptive spatial filtering technique which 
was reported previously [5] and has no localization bias under 
ideal conditions [3].  Although the sLORETA weighted by 
correlation topography is considered to estimate significant 
correlated sources, the estimated sources averaged among all 
sections may become blurred due to wide skirts caused by 
lower spatial resolution of the sLORETA. Therefore, in order 
to avoid the blurred results and to achieve higher detection 
ability of correlated sources, we combine source 
quantification using the sLORETA-qm [6] and modulating of 

each section's spectra magnitude by reference at lreff   (i.e. 

elref
j
ref Njf 1:)( B ) before averaging among all sections. 

The sLORETA-qm is a modified sLORETA for quantitative 
analysis which also have been applied to clinical application 
by evaluating spontaneous neuronal brain activity [7]. The 
combination effectively allow us to detect correlated sources 
because non-correlated sources are suppressed by the 
quantification through all sections. This procedure is 
described as below. 
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where )(ˆ
m

k
qi fS  is quantified estimated source by 

sLORETA-qm. 

B. Evaluation with simulated motor imagery task data 

 To assess accuracy of source localization by this approach, 
we evaluated it with simulated data. 

The simulated data were supposed as motor imagery task 
[2], which had beta activity in motor area and negative 
correlated gamma activity in parieto-occipital area. 
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1) Sources location and  waveform 

Three equivalent current dipoles were simulated and 
located referring magnetic resonance image (MRI) of normal 
subject (37 y.o., male) as s1: beta activity (20[Hz]) on left 
motor area, s2: gamma activity (50[Hz]) on left 
parieto-occipital area and s3: spontaneous activity on left 
occipital area with same frequency as s2 (50[Hz]). The third 
source (s3) replicated alpha activity, however its frequency is 
set to 50[Hz] same as the second source (s2) so as to show 
whether our proposed method can extract only correlated 
source or not even in same frequency.  The characteristics of 
those sources were summarized in Table 1, and waveforms 
were shown in Fig. 1. Depth of intensity of s1, peak intensity 
of s2 , rising time of s1 and s2, and peak time of s2 were 
fluctuated. One epoch data included transiently reduced beta 
activity, gamma activity synchronized with the reduction of 
beta activity and continuous alpha activity (50[Hz]) in time 
period of 2.5 [s] and with sampling rate of 500 [Hz]. Totally 
100 epochs data were combined and used for analysis. 

 
 
2) Forward modeling and sensor signals 

Each EEG sensor was located corresponding with 
international 10-20 system by referring the MRI. Sensor 
signals were calculated with 4 layers spherical head model [8] 
fit to the MRI, and added white noise of 16 signal-to-ratio. 
sLORETA(-qm) was performed with 10mm of voxel spacing 
in the brain. 

III. RESULTS 

A. Sensor level analysis 

Cross-frequency correlation was calculated under the 

condition of 2[s] time window, 50% overlap and Hanning 
window function (time section count was 249). 

At the first, we selected C3 as reference signal because 
significant activity was observed on the left side and C3 was 
centered among electrodes on the left side. Then, 
cross-frequency map of Cz with respect to C3 as reference 
signal because this map clearly showed frequency pair 
between around 50[Hz] of Cz and 20[Hz], 50[Hz] of C3 
comparing with other maps. In the cross-frequency map, 
significant negative correlation (-0.87; p<0.001) was 
observed at frequency pair of (C3: 20[Hz], Cz: 51[Hz]) as 
shown in Fig. 2-(A) and corresponding correlation 
topography was shown in Fig. 2-(B). From this result, we 
next derived correlation topography of EEG signals of 
20[Hz] with respect to Cz of 51[Hz] as shown in Fig. 2-(C). 
These correlation topographies were used as sensor signal 
weight for further source estimation. 

 

B. Source level analysis 

In accordance with proposed approach, source estimation 
in frequency domain was performed at frequency of (20, 51 
[Hz]) and with sensor signal weighting by the correlation 

(A)

 
(B) (C)

 
Fig. 2.  Results of sensor level analysis: (A) Cross-frequency 
correlation map between signal of C3 as reference signal and signal 
of Cz, calculated under the condition of 2[s] time window, 50% 
overlap and Hanning window function. (B) Correlation topography 
of EEG signals of 51 [Hz] with respect to 20 [Hz] of C3 as reference 
signal (corresponding to black arrow indicated in (A)). (C) 
Correlation topography of EEG signals of 20 [Hz] with respect to 51 
[Hz] of Cz as reference signal 

s1

s2

s3

[s]

100 [nAm]

 
Fig. 1.  Simulated waveform of each source in one epoch. 

TABLE  I 
CHARACTERISTICS OF SIMULATED SOURCES 

Source 
No. 

Location 
(MRI coordinate [mm]) 

Direction Peak intensity 
[nAm] 

Frequency 
[Hz] 

Rising time 
[ms] 

Peak time 
[ms] 

S1 Left motor area 
(36.4, 9.9, 57.2) 

Anterior to 
Posterior 

Sustain: 80 
Depth: 40 to 80 

20 450 to 500 1000 

S2 Left parieto-occipital area 
(26.4, 40.0, 27.2) 

Posterior to 
Anterior 

40 to 80 50 270 to 300 900 to 1000 

S3 Left occipital area 
(6.4, 49.9, 7.2) 

Anterior to 
Posterior 

10 50 Continuous sin wave 

7019



 
 

 

topographies which identified in sensor level analysis. 
Estimated sources are observed as voxels whose intensity is 
spatially max or local max voxel [6]. 

For frequency of 20 [Hz], we obtained only one source 
whose location was [36.4, 9.9, 57.2][mm] , which completely 
corresponded with the simulated location of s1 (Fig. 3-(A)). 
For frequency of 50 [Hz], we obtained three sources.  
Maximum intensity source located on  [26.4, 40.0, 27.2][mm], 
which completely coincided with the simulated location of s2, 
while intensities of remaining sources were lower than 5% of 
the maximum intensity (Fig. 3-(B)). And source level 
correlation between the sources of 20[Hz] and 50[Hz] was 
validated as -0.66. Note that  the third source (s3) was not 
estimated even though it also has frequency of 50[Hz]. This 
means that our proposed method can estimate only correlated 
sources. 

 

C. Source estimation by conventional method 

To show advantage of the proposed method, we also 
calculated with conventional method, that is, frequency 
domain sLORETA/sLORETA-qm without information from 
sensor level analysis except frequency pair of 20 and 50 [Hz]. 

One source of 20 [Hz] was observed and it located on [36.4 
9.9 57.2][mm] completely corresponded with one of s2. For 
frequency of 50[Hz], two estimated sources were detected.  
The first source with maximum intensity normalized as 1.0 
located on [26.4, 40.0, 27.2][mm] completely corresponded 
to location of s2. The second source with intensity of 0.80 
located on [6.4. 50.0, 7.2] [mm] which is completely same as 
location of s3. Source level correlation between source of 
20[Hz]  (s1) and the first source of 51[Hz] (s2) was -0.64, 
while one for second source of 51[Hz] (s3) was -0.59. 

Although the source of s3 simulated to have no correlation 
with the source of s1, this result indicated high correlation. 
This false correlation was considered to be caused by effect of 
wide skirts of estimated sources of s2 result from lower 
spatial resolution of original sLORETA. 

IV. DISCUSSION 

By using simulated data, we demonstrated that our 
proposed method could estimate correlated sources even 
under the situation that non-correlated sources have same 
frequency as correlated sources. 

For source estimation with EEG or MEG signals, a spatial 
filtering technique is recently applied as an alternative 
method for equivalent current dipole estimation technique. 
Non-adaptive type of spatial filtering technique, such as 
sLORETA, is reported to discriminate correlated sources. 
However, it may lead to inaccurate results due to its low 
spatial resolution. Therefore, in the present study, we 
proactively utilized the identified information in sensor level 
analysis (e.g. cross-correlation map and correlation 
topography), which allow us to focus on target sources. Our 
proposed approach can provide many advantages for analysis 
of connectivity and source estimation: 1) Confirmation of 
correlation in sensor level analysis make sure existence of 
significant characteristics. 2) By using spatial filtering 
technique in frequency domain, higher signal to noise 
analysis can be achieved because source estimation at 
identified frequency will exclude non-target activities in other 
frequency bands. 3) Correlated source can be focused by 
sensor signal weighting with correlation topography and 
modulated spectrum magnitude by correlated sensor signal 
identified in sensor level analysis. 

Our proposed method can be considered to incorporate 
results of sensor level analysis into solution of inverse 
problem. In turn, the method uses objective-based constraints 
to solve inverse problem. Therefore, to investigate other types 
of brain activities such as those with transient movement, 
results of appropriate sensor level analysis (e.g. 
time-frequency analysis with trigger of the movement 
initiation) should be incorporate as other types of 
objective-based constraints to solve the inverse problem. 

We believe that the method we propose become helpful 
tool to reveal connections of neuronal activities. 

REFERENCES 
[1] Osipova D., Hermes D., Jensen O.. Gamma Power Is Phase-Locked to 

Posterior Alpha Activity. PLOS ONE, 2008, Vol 3, Issue 12: 1-7 
[2] Lange F.P., Jensen O., Bauer1 M., Toni I.. Interactions between 

posterior gamma and frontal alpha/beta oscillations during imagined 
actions. frontiers in human neuroscience, 2008 Vol.2 Article 7; 1-12 

[3] Sekihara, K., Sahani, M., Nagarajan, S.S.  Localization bias and spatial 
resolution of adaptive and non-adaptive spatial filters for MEG source 
reconstruction. Neuroimage 2005, Vol.25: 1056–1067. 

[4] Sekihara K., Nagarajan S.S, Poeppel D., Marantz A., Miyashita Y. 
Reconstructing Spatio-Temporal Activities of Neural Sources Using an 
MEG Vector Beamformer Technique. IEEE Trans. Biomed. Eng. 2001, 
Vol.48:760– 771. 

[5] Pascual-Marqui R.D., Standardized low-resolution brain 
electromagnetic tomography (sLORETA): technical details. Methods 
Find Exp. Clin. Pharmacol. 2002, Vol.24 (Suppl. D), 5–12. 

[6] Terakawa, Y., Tsuyuguchi, N., Tanaka, H., Shigihara, Y., Sakamoto, S., 
Takami, T., Ohata, K., Quantitative analysis of MEG using modified 
sLORETA for clinical application. Clin. Neurophysiol. 2008, Vol.119: 
1917–1922. 

[7] Sakamoto S., Tanaka H., Tsuyuguchi N., Terakawa Y., Ohata K., Inoue 
Y., Miki Y., Hara M., Takahashi Y., Nitta K., Sawa H., Satone A., Ide 
W., Hashimoto I., Kamada H. Quantitative imaging of spontaneous 
neuromagnetic activity for assessing cerebral ischemia using 
sLORETA-qm. NeuroImage 2010, Vol.49: 488–497 

[8] Zhi Zhang. A fast method to compute surface potentials generated by 
dipoles within multilayer anisotropic spheres. Phys. Med. Biol. 1995, 
Vol.40: 335-349 

(A) (B) (C)

 
Fig. 3.  Estimated sources superimposed on MR image.: (A) Source of 
20 [Hz] correlated with 50 [Hz] signal of Cz. (B) Source of 50 [Hz] 
correlated with 20 [Hz] signal of C3. (C) Gray scale color bar 
indicating corresponding intensity. 
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