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Abstract— The EIT reconstruction problem is approached
as an optimization problem where the difference between a
simulated impedance domain and the observed one is mini-
mized. This optimization problem is often solved by Simulated
Annealing (SA), but at a large computational cost due to
the expensive evaluation process of the objective function. We
propose here, a variation of SA applied to EIT where the
objective function is evaluated only partially, while ensuring
upper boundaries on the deviation on the behavior of the
modified SA. The reconstruction method is evaluated with
simulated and experimental data.

I. INTRODUCTION

EIT is an imaging modality that estimates the electrical
conductivity distribution within the body when a low ampli-
tude current pattern is applied to its surface and the potential
at determined points of that surface is measured through elec-
trodes or, alternatively, when a potential is applied and the
current flowing through the surface is measured [1]. The two
main forms of EIT are dynamic imaging and static imaging
yielding differential and absolute images respectively. The
images produced by differential imaging represent the con-
ductivity changes of a region between two time intervals [2].
Imaging physiological function within the body largely relies
on this technique. This work, is mainly concerned with the
reconstruction of static conductivity images which requires
more advanced numerical algorithms.

This paper is structured as follows. Section II presents
the problem formulation where it is explained how the EIT
reconstruction problem can be approached as an optimization
problem. Section III explains the proposed algorithm where
a SA with incomplete evaluation of the objective function is
used to solve the EIT reconstruction problem. In section IV
some results obtained from physical data are presented.
Finally, section V rounds up the paper with the conclusions.

II. FORMULATION

The typical forward problem in EIT is given the conductiv-
ity distribution σ and the current J injected through boundary
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electrodes, find the potential distribution φ within Ω and
in particular the resulting potentials at the measurement
electrodes φm. The frequencies used in EIT are low enough
so that the quasi-static approximation hold, and thus we can
ignore capacitive and inductive effects. Under such quasi-
static conditions, the solution of the forward problem is
rather simple as it only requires solving the Laplace equation

∇(σ∇φ) = 0 (1)

At the boundary, currents are injected through electrodes;
thus the current density through the l-th electrode surface Jl
is given by

σ
∂φ

∂ n̂
= Jl (2)

where n̂ is the external normal versor and zero elsewhere at
the boundary. Data is collected by injecting current with a
single source and measuring voltage. There are several ways
in which the pair of electrodes is switched and the voltage
measurements are collected in the literature [3].

A. Finite Element Model

The inverse problem is formulated as given the injected
currents J and the potentials at measurement electrodes φm,
find the electrical conductivity distribution σ within Ω. In
practice only a finite number of potential measurements
is made through the electrodes, so the Dirichlet boundary
condition is incomplete [4]. For an irregular domain and
isotropic media, analytical solution to the Laplace equation
(1) with boundary condition (2) are unknown; thus, the
partial differential equations were approximated by the finite
element method (FEM), the domain is discretized with
triangular linear elements with constant conductivity and
both problems, forward and inverse, are solved numerically.
The virtual potential principle associated with the Laplace
equation provides the local element matrices.

When the local element matrices are stated in terms of the
global coordinates of the mesh, the global conductivity ma-
trix [1] which includes electrode contact impedance effects,
is obtained; then the following relation holds

KKK ·ΦΦΦ =CCC (3)

where KKK(σ) ∈ ℜs×s is the conductivity matrix calculated
at a given particular distribution σ , ΦΦΦ is a matrix contain-
ing nodal potentials corresponding to each applied current
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pattern, and CCC represents p linearly independent current
patterns.

B. The Inverse Problem as an Optimization Problem

Since there are known methods for efficiently solve the
forward problem (such as FEM), one possible approach to
the inverse problem is to look at it as an optimization prob-
lem, where the optimization variables are a parametrization
of the conductivity inside the domain and the optimization
function is some measure of how the solution of the forward
problem applied to the conductivity distribution produced by
the optimization variables matches the measured data. One
possible objective function E (σ) is the Euclidean distance
between the measured electric potentials φ i

m and the calcu-
lated potentials φ i

c (σ) for the i-th applied current pattern:

E (σ) =
√

Σ|φ i
m−φ i

c (σ)|2 (4)

Mello et al. [5] proposed an example of such approach,
where the objective function (4) is minimized by Sequential
Linear Programming yielding estimations of the conductivity
distribution. It was also pointed that it is difficult to solve
this problem by methods based on gradients of the objective
function due to the fact that the problem is often ill-posed.
Numerical errors in the calculation of the objective function
are greatly amplified in its derivatives. That is why the
interest on SA applied to EIT is increasing, as it requires no
evaluation of objective function derivatives (in fact, as we
will show, it does not even require a complete computation
of the objective function).

III. APPLYING SIMULATED ANNEALING TO EIT

Herrera et al. [6] minimized objective function (4) with
SA and by doing so, managed to reconstruct very accurate
conductivity distributions of the body, but at a very high
computational cost. This is unsurprising, as each step of the
SA involves the solution of a full FEM problem in order to
evaluate the objective function.

A. Incomplete Evaluation of the Objective Function

As the evaluation of the objective function is responsible
for the bulk of the SA, it is interesting to look for means
to reduce its cost. An example of SA with incomplete
evaluation of the objective function can be seen in [7],
where an estimate of the probability distribution of the
objective function is used instead of the actual value. In
this work, it is presumed that the exact distribution of the
objective function is unknown, and it is proposed an iterative
computation process that yields boundaries for its values.
There is a relationship between those boundaries and the
probability of deviation of the algorithm from an exact SA.
Using those relationships and imposing upper limits for those
probabilities, stopping criteria for the interactive calculation
of the objective function are obtained. The objective function
is given by (4). The calculated potentials φ i

c for each current
pattern are obtained from a FEM algorithm whose kernel is
a solver for the linear system posed by (3).

The Conjugate Gradient (CG) method is usually used
to solve such linear systems [8] as matrix KKK is sparse,
symmetric and positive–definite. Meurant [9] proposed a
method to estimate an upper bound for the l2 norm of the
error of the CG method at each iteration. Such bound can
be used to estimate a bound on the error of the objective
function (4) when the exact FEM solutions φc are replaced
by partial solutions φ̃c obtained by stopping the CG method
before the final convergence. This is done by taking the
conservative assumption that all the error is concentrated on
the electrode nodes. Then, if di =

∣∣φ i
m−φ i

c
∣∣ is the component

of the objective function for a given current pattern, d̃i =∣∣φ i
m− φ̃ i

c
∣∣ is its estimate obtained with the partial solution φ̃c

and ε i ≥
∣∣φ i

c− φ̃ i
c
∣∣ is an upper boundary on the error of the

CG method, we have

Ẽ =

√
Σ
(
d̃i
)2

E ≤ Emax =

√
Σ(di + ε i)2

E ≥ Emin =
√

Σmax{di− ε i,0}2

(5)

The upper and lower boundaries for E converge to the exact
value as the number of multiple CG iterations increase. As
SA is sensible only to relative variations of the objective
function those boundaries must be converted to variation of
E boundaries. If ∆E = E j − E j+1 is the variation of the
objective function when the SA process moves from one
solution x j to another x j+1 then, by interval arithmetics,

∆Ẽ = Ẽ j− Ẽ j+1

∆E ≤ ∆Emax = E j
max−E j+1

min
∆E ≥ ∆Emin = E j

min−E j+1
max

(6)

Again, those boundaries for ∆E converge to the exact value,
but this time, it is necessary to increase the number of
iterations for both evaluations: x j and x j+1.

From that, it can be seen that a SA process that would
use the partial FEM solutions φ̃c instead of the exact ones
φc would have a limited probability of diverging from the
process that uses the exact solutions. Indeed, by imposing
Perr as an upper limit on the probability of the process taking
a “wrong” decision (rejecting a solution when it should
accept it or accepting when it should reject), conditions for
the boundaries in (6) are defined:

e
−∆Emax/kt ≥

{
1−Perr if ∆Ẽ ≤ 0,

e
−∆Ẽ/kt −Perr if ∆Ẽ > 0

(7)

e
−∆Emin/kt ≤ min(1,Perr + e

−∆Ẽ/kt ) (8)

These conditions do not translate directly into stopping
criteria for the CG algorithm, as ∆Emax and ∆Emin are the
partial solutions of two separated sets of FEM problems,
and in general, they are not reachable by tightening the
boundaries in just one set. As such, every solution must have
its objective function evaluation process stored so it may be
possible to continue it from where it has stopped.
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Fig. 1. Energy (Objective Function) × Temperature graph for the
“checkerboard” problem (error bars represent the standard deviation at a
fixed temperature).

IV. RESULTS

To evaluate the viability of SA with partial evaluation
applied to the EIT problem, a simple implementation was
built using a simulated domain: a square, measuring 16×16
units, composed of 76 triangular elements with 320 nodes,
of whose 32 are electrodes. The electric conductance do-
main was divided in 64 2× 2 squares (notice the potential
discretization and the conductance discretization are not
the same). The FEM problems were solved using a CG
method with Incomplete Choleski decomposition precondi-
tioning [10]. The 64 conductivity parameters are generated
by SA. The neighborhood heuristic used by the SA was taken
from [11], changing only a single conductivity parameter at
each iteration and reducing the modifications on parameters
that lead to rejected solutions. The divergence probability Perr
was arbitrarily defined as 1/100. The simulated problem is
a 4×4 “checkerboard” conductivity pattern, alternating high
conductivity (2) and low conductivity (1). The SA process
has accurately reconstructed the conductivity distribution.
The examination of intermediary results, displayed on Fig. 1
shows that the impedance distribution is reconstructed from
the outside towards the interior of the domain.

The evaluation of a method for reverse problems with
synthetic data, (particularly when a single model is used
both for the production of data and its inversion) can be
misleading [12]. Indeed, the graph in Fig. 1 shows that, as the
temperature decreases, the difference between the electrode
potentials of the original model and the reconstructed one
tends to zero. While expected, this behavior is unrealistic, as
in practical applications, the simulated model will always
differ from the physical system. It is thus necessary to
evaluate the proposed reconstruction process when applied
to data obtained from a physical system.

For that, a simple model was built, composed of a cylindric
container made of acrylic measuring 300mm in diameter,
with 32 electrodes equally spaced in the outer wall. The
electrodes are prismatic, that is, their cross-sections are
invariant. The container was filled with saline water up to
a height of 25mm. The current was applied to the model
in “jump-three” patterns, that is, the current was applied
between two electrodes that were four positions apart (that is,
separated by three electrodes). Those patterns were applied

Fig. 2. Layout of the experiment. Small circles represent cucumber slices
immersed in the salt solution.

Fig. 3. Reconstructed image from experimental data.

to each of the 32 electrodes. The applied current was of
about 10mA (actual values varied at each application) AC
at 125Hz. In order to produce observable phantoms, three
slices of cucumber (see [13] for a study of cucumber as a
material for EIT evaluation), slightly thicker than the solution
height (but not enough to produce significant 3D effects)
where inserted in a triangular pattern as seen in Fig. 2. Data
was collected for both the empty saline solution and for the
solution with cucumber slices.

For the simulated model, a FEM model was created
with 750 triangular elements and 450 nodes. Observing the
data collected with the empty medium, it became obvious
that the impedance of each electrode varies significantly.
In a first step, to precisely obtain the impedance for each
electrode, the reconstruction process was executed with the

Fig. 4. Energy (Objective Function) × Temperature graph for the
reconstruction from experimental data (error bars represent the standard
deviation at a fixed temperature).

7035



empty medium data, presuming uniform (but unknown)
conductivity inside the simulated model and independent
conductivity impedance values for each electrode (yielding
an optimization problem of 32+1 unknowns). To reconstruct
the cucumber phantoms, the conductivity distribution in the
simulated model was parameterized using the same 1st-order
interpolating functions used for the potential in the FEM
(the parameters being the conductance value at each node).
The conductance of the electrodes was fixed at the values
obtained in the first step, and so was the conductance for the
“outer ring” elements.

The reconstructed phantom can be seen in Fig. 3. As one
can see, despite being heavily constrained by the mesh coarse
discretisation, the reconstructed conductance distribution is a
reasonable image of the physical phantom, evoking a vaguely
triangular shape. The qualitative convergence can be seen in
Fig. 4. Comparing with data in Fig. 1, it is clear that the
energy no longer decreases freely, hitting instead an “error
floor” induced by the FEM errors. The final reconstruction
error is of about 62V. This accounts for the total difference
on all 32 electrodes and all 32 current patterns between
observed data and the simulation results. Taking into account
the normalization of the observed potentials and considering
an uniform distribution of errors, this represents an error of
less than 2% per electrode at each observied current pattern.
The impact of partial evaluation objective function in the
process performance can be seen in Fig. 5, showing the
average number of CG iterations used by the process at
each temperature. Considering that the system has over 450
nodes, it is remarkable that the system is able to achieve those
results while using in average less than 30 iterations of CG.
More interesting is the evolution of the iteration number as
the optimization progresses. At high temperatures, the high
kt and ∆Ẽ values lead to relatively loose conditions in (7)
and (8), reachable by few iterations of the CG algorithm. As
the temperature diminishes, lower kt and ∆Ẽ values impose
through (7) and (8) tighter conditions, leading to a higher
number of CG iterations. It may be a bit surprising that as the
process converges towards the final solution, the number of
CG iterations reduces again. This is explained by two factors.
First, the “initial guess” for the CG algorithm is obtained
from the solution obtained at the previous solution of the
SA algorithm. Second, the adaptive neighborhood heuristic
reduces dramatically the modifications on the conductivity
distribution as the process converges towards a global op-
timum [11]. Combining those two factors, it can be seen
that in the final convergence of the optimization process, the
previous FEM solutions are an initial guess good enough to
compensate for the increasingly severer conditions on the
boundaries of ∆E. The process showed in Figs. 4-5 has
deliberately extreme annealing parameters, with a too high
initial temperature and too low final temperature. The whole
process took over 8 hours to complete. The image in Fig. 3
was reconstructed using an initial temperature of just 0.05
and final temperature of 0.0075 and was completed under 55
minutes on an intel i7 3.2 GHz CPU. It is worth of notice
that the code is yet unoptimized, using a single thread of

Fig. 5. CG Iterations × Temperature for the reconstruction from experi-
mental data.

execution and 32 bits architecture.

V. CONCLUSIONS

It is proposed a new approach to solve the EIT inverse
problem using a SA with incomplete evaluation of the
objective function. It is showed, in the particular case of
EIT, how it is possible to enforce upper bounds on the
probability of the modified SA by converting those bounds
in stopping criteria for the inner CG algorithms used to solve
the forward EIT problem. Initial results, both with synthetic
and experimental data, show that while the partial evaluation
of objective functions does not compromise the convergence
of the SA algorithm, it has a great potential of improving its
efficiency.
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